scholarly journals Discussion: “Computation of Rigid-Body Rotation in Three-Dimensional Space From Body-Fixed Linear Acceleration Measurements” (Mital, N. K., and King, A. I., 1979, ASME J. Appl. Mech., 46, pp. 925–930)

1980 ◽  
Vol 47 (3) ◽  
pp. 686-686
Author(s):  
L. E. Goodman ◽  
A. R. Robinson
1979 ◽  
Vol 46 (4) ◽  
pp. 925-930 ◽  
Author(s):  
N. K. Mital ◽  
A. I. King

The angular acceleration of a rigid body with respect to a body-fixed (moving) frame can be reliably computed from nine acceleration field measurements. Noncommutativity of finite rotations causes computational problems during numerical integration to obtain the transformation matrix, especially when the rotation is three-dimensional and there are errors in the measured linear accelerations. A method based on the orientation vector concept is formulated and tested against hypothetical data. The rigid-body rotations computed from linear accelerometer data from impact acceleration tests are compared against those obtained from three-dimensional analysis of high speed movie films.


Author(s):  
Rodolphe Chabreyrie ◽  
Dmitri Vainchtein ◽  
Cristel Chandre ◽  
Pushpendra Singh ◽  
Nadine Aubry

The use of microscopic discrete fluid volumes (i.e., droplets) as microreactors for digital microfluidic applications often requires mixing enhancement and control within droplets. In this work, we consider a translating spherical liquid droplet to which we impose a time periodic rigid-body rotation which we model using the superposition of a Hill vortex and an unsteady rigid body rotation. This perturbation in the form of a rotation not only creates a three-dimensional chaotic mixing region, which operates through the stretching and folding of material lines, but also offers the possibility of controlling both the size and the location of the mixing. Such a control is achieved by judiciously adjusting the three parameters that characterize the rotation, i.e., the rotation amplitude, frequency and orientation of the rotation. As the size of the mixing region is increased, complete mixing within the drop is obtained.


2014 ◽  
Vol 25 (4) ◽  
pp. 768-772 ◽  
Author(s):  
Attila Nemes ◽  
Kálmán Havasi ◽  
Tamás Forster

AbstractLeft ventricular twist results from the movement of two orthogonally oriented muscular bands of the helical myocardial structure, with a consequent clockwise rotation of the left ventricular base and counterclockwise rotation of the left ventricular apex. To the best of the authors’ knowledge, this is the first time that left ventricular “rigid body rotation”, the near absence of left ventricular twist in hypoplastic right-heart syndrome, has been demonstrated.


2013 ◽  
Vol 344 ◽  
pp. 37-40
Author(s):  
Ning Sun ◽  
Huan Yu Li ◽  
Jing Jing Gong

On the basis of Coordinate transformation analysis of the inertia parameters in three-dimensional space, according to the characteristic that the coordinate direction is existed and unique which the product of inertia is 0 when rotating the coordinate system, a new method to judge and calculate the particle information by searching for the intersection of the two lines that lead from two different coordinate origin is proposed. The processes and procedures to calculate the internal mass of rigid body are deduced theoretically. A special numerical example is given to verify the correctness of the theory. The error factors are analyzed qualitatively as well.


Sign in / Sign up

Export Citation Format

Share Document