scholarly journals Redetermination of the crystal structure of K[BrF4] from single-crystal X-ray diffraction data

IUCrData ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Sergei I. Ivlev ◽  
Florian Kraus

Single crystals of K[BrF4], potassium tetrafluoridobromate(III), were grown from a solution of KHF2 in bromine trifluoride. The current report is the first refinement of the crystal structure of K[BrF4] using single-crystal X-ray diffraction data. In comparison with previous refinements from powder data, the fractional coordinates of the F atom were determined with higher precision, and anisotropic displacement parameters were refined for all atoms. The structure contains square-planar [BrF4]− anions. The coordination polyhedron of the potassium cation is a square antiprism.

IUCrData ◽  
2019 ◽  
Vol 4 (11) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].


IUCrData ◽  
2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Sergei I. Ivlev ◽  
Florian Kraus

Single crystals of barium bis[tetrafluoridobromate(III)], Ba[BrF4]2, were obtained in the form of tiny blocks. Crystal-structure refinement of Ba[BrF4]2 from single-crystal X-ray diffraction data confirmed the previous model obtained on the basis of powder data [Ivlev et al. (2014). Eur. J. Inorg. Chem. pp. 6261–6267], but with all atoms refined with anisotropic displacement parameters. The crystal structure consists of two symmetry-independent barium cations that are each coordinated by twelve fluorine atoms, forming edge-sharing polyhedra, and an almost square-planar [BrF4]− anion. The compound crystallizes in the Ba[AuF4]2 structure type.


Author(s):  
Gohil S. Thakur ◽  
Hans Reuter ◽  
Claudia Felser ◽  
Martin Jansen

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.


Author(s):  
Takashi Mochiku ◽  
Yoshitaka Matsushita ◽  
Nikola Subotić ◽  
Takanari Kashiwagi ◽  
Kazuo Kadowaki

RhPb2 (rhodium dilead) is a superconductor crystallizing in the CuAl2 structure type (space group I4/mcm). The Rh and Pb atoms are located at the 4a (site symmetry 422) and 8h (m.2m) sites, respectively. The crystal structure is composed of [RhPb8] antiprisms, which share their square faces along the c axis and the edges in the direction perpendicular to the c axis. We have succeeded in growing single crystals of RhPb2 and have re-determined the crystal structure on basis of single-crystal X-ray diffraction data. In comparison with the previous structure studies using powder X-ray diffraction data [Wallbaum (1943). Z. Metallkd. 35, 218–221; Havinga et al. (1972). J. Less-Common Met. 27, 169–186], the current structure analysis of RhPb2 leads to more precise unit-cell parameters and fractional coordinates, together with anisotropic displacement parameters for the two atoms. In addition and likewise different from the previous studies, we have found a slight deficiency of Rh in RhPb2, leading to a refined formula of Rh0.950 (9)Pb2.


2004 ◽  
Vol 82 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Kenneth CW Chong ◽  
Brian O Patrick ◽  
John R Scheffer

When crystals of 9-tricyclo[4.4.1.0]undecalyl-4-(carbomethoxy)phenyl ketone (1) were allowed to stand in the dark for extended periods of time at room temperature, the compound underwent a thermal reaction — the enolene rearrangement — to afford enol 2. The crystals remained transparent and appeared unchanged in shape as the reaction proceeded. X-ray diffraction data were collected on single crystals containing 17%, 25%, 66%, and 100% of the enol. The crystal structure of a simple enol was obtained via this novel single-crystal-to-single-crystal enolene rearrangement.Key words: single crystal, thermal, rearrangement, enol, enolene.


IUCrData ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Caesium tetrafluoridobromate(III), CsBrF4, was crystallized in form of small blocks by melting and recrystallization. The crystal structure of CsBrF4 was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF4 contains two square-planar [BrF4]− anions each with point group symmetry mmm, and a caesium cation (site symmetry mm2) that is coordinated by twelve fluorine atoms, forming an anticuboctahedron. CsBrF4 is isotypic with CsAuF4.


2015 ◽  
Vol 71 (11) ◽  
pp. 1325-1327 ◽  
Author(s):  
Maxim Bykov ◽  
Elena Bykova ◽  
Vadim Dyadkin ◽  
Dominik Baumann ◽  
Wolfgang Schnick ◽  
...  

Hitherto, phosphorus oxonitride (PON) could not be obtained in the form of single crystals and only powder diffraction experiments were feasible for structure studies. In the present work we have synthesized two polymorphs of phosphorus oxonitride, cristobalite-type (cri-PON) and coesite-type (coe-PON), in the form of single crystals and reinvestigated their crystal structures by means of in house and synchrotron single-crystal X-ray diffraction. The crystal structures ofcri-PON andcoe-PON are built from PO2N2tetrahedral units, each with a statistical distribution of oxygen and nitrogen atoms. The crystal structure of thecoe-PON phase has the space groupC2/cwith seven atomic sites in the asymmetric unit [two P and three (N,O) sites on general positions, one (N,O) site on an inversion centre and one (N,O) site on a twofold rotation axis], while thecri-PON phase possesses tetragonalI-42dsymmetry with two independent atoms in the asymmetric unit [the P atom on a fourfold inversion axis and the (N,O) site on a twofold rotation axis]. In comparison with previous structure determinations from powder data, all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles.


1983 ◽  
Vol 38 (7) ◽  
pp. 830-834 ◽  

Abstract Single crystals of acetyltetralone grown from a solution containing a small amount of Cu(II) ions are studied by ESR. The corresponding g, 63Cu magnetic and quadrupolar hyperfine tensors are obtained and are consistent with the trapping of a square planar copper(II) complex. X-ray diffraction shows that pure acetyltetralone crystallizes in the orthorhombic space group Pbca (a - 8.893 Å, b = 20.301 Å, c = 10.715 Å). Comparison of the ESR eigenvectors with the bond directions obtained from this crystal structure study shows that the Cu(II) complex experiences some constraint from the crystal matrix. The present complex is a model for one of the complexation sites of tetracyclines.


2012 ◽  
Vol 68 (6) ◽  
pp. i50-i50 ◽  
Author(s):  
Luca Bindi ◽  
Alessandro Figini Albisetti ◽  
Giovanni Giunchi ◽  
Luciana Malpezzi ◽  
Norberto Masciocchi

The crystal structure of Mg2B25, dimagnesium pentaeicosaboride, was reexamined from single-crystal X-ray diffraction data. The structural model previously reported on the basis of powder X-ray diffraction data [Giunchi et al. (2006). Solid State Sci. 8, 1202–1208] has been confirmed, although a much higher precision refinement was achieved, leading to much smaller standard uncertainties on bond lengths and refined occupancy factors. Moreover, all atoms were refined with anisotropic displacement parameters. Mg2B25 crystallizes in the β-boron structure type and is isostructural with other rhombohedral compounds of the boron-rich metal boride family. Magnesium atoms are found in interstitial sites on special positions (two with site symmetry .m, one with .2 and one with 3m), all with partial occupancies.


Author(s):  
L. Bohatý ◽  
R. Fröhlich

AbstractKZnSbTN is an example from the large acentric double salt-like family of tartrato-antimonates. Its crystal structure was determined from single-crystal X-ray diffraction data (orthorhombic,Single crystals of the title compound of up to 4×4×6 cm


Sign in / Sign up

Export Citation Format

Share Document