anisotropic displacement parameters
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 1)

Author(s):  
Makoto Tokuda ◽  
Kunio Yubuta ◽  
Toetsu Shishido ◽  
Kazumasa Sugiyama

The crystal structures of the rare-earth (RE) trirhodium diborides praseodymium trirhodium diboride, PrRh3B2, neodymium trirhodium diboride, NdRh3B2, and samarium trirhodium diboride, SmRh3B2, were refined on the basis of single-crystal X-ray diffraction data. The crystal chemistry of RERh3B2 (RE: Pr, Nd, and Sm) compounds has previously been analyzed mainly on the basis of powder samples [Ku et al. (1980). Solid State Commun. 35, 91–96], and no structural investigation by single-crystal X-ray diffraction has been reported so far. The crystal structures of the three hexagonal RERh3B2 compounds are isotypic with that of CeRh3B2; RE, Rh and B sites are situated on special positions with site symmetry 6/mmm (Wyckoff position 1a), mmm (3g) and \overline{6}m2 (2c), respectively. In comparison with the previous powder X-ray study of hexagonal RERh3B2, the present redetermination against single-crystal X-ray data has allowed for the modeling of all atoms with anisotropic displacement parameters (ADPs). The ADPs of the Rh atom in each of the structures result in an elongated displacement ellipsoid in the direction of the stacking of the Rh kagomé-type layer. The features of obtained ADPs of atoms are discussed in relation to RERh3B2-type and analogous structures.


Author(s):  
Takashi Mochiku ◽  
Yoshitaka Matsushita ◽  
Nikola Subotić ◽  
Takanari Kashiwagi ◽  
Kazuo Kadowaki

RhPb2 (rhodium dilead) is a superconductor crystallizing in the CuAl2 structure type (space group I4/mcm). The Rh and Pb atoms are located at the 4a (site symmetry 422) and 8h (m.2m) sites, respectively. The crystal structure is composed of [RhPb8] antiprisms, which share their square faces along the c axis and the edges in the direction perpendicular to the c axis. We have succeeded in growing single crystals of RhPb2 and have re-determined the crystal structure on basis of single-crystal X-ray diffraction data. In comparison with the previous structure studies using powder X-ray diffraction data [Wallbaum (1943). Z. Metallkd. 35, 218–221; Havinga et al. (1972). J. Less-Common Met. 27, 169–186], the current structure analysis of RhPb2 leads to more precise unit-cell parameters and fractional coordinates, together with anisotropic displacement parameters for the two atoms. In addition and likewise different from the previous studies, we have found a slight deficiency of Rh in RhPb2, leading to a refined formula of Rh0.950 (9)Pb2.


IUCrData ◽  
2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Sergei I. Ivlev ◽  
Florian Kraus

Single crystals of barium bis[tetrafluoridobromate(III)], Ba[BrF4]2, were obtained in the form of tiny blocks. Crystal-structure refinement of Ba[BrF4]2 from single-crystal X-ray diffraction data confirmed the previous model obtained on the basis of powder data [Ivlev et al. (2014). Eur. J. Inorg. Chem. pp. 6261–6267], but with all atoms refined with anisotropic displacement parameters. The crystal structure consists of two symmetry-independent barium cations that are each coordinated by twelve fluorine atoms, forming edge-sharing polyhedra, and an almost square-planar [BrF4]− anion. The compound crystallizes in the Ba[AuF4]2 structure type.


Author(s):  
Nikita E. Bogdanov ◽  
Boris A. Zakharov ◽  
Dmitry Chernyshov ◽  
Philip Pattison ◽  
Elena V. Boldyreva

Thermal evolution of an organic ferroelectric, namely, glycinium phosphite, was probed by multi-temperature single-crystal diffraction using synchrotron radiation and also by a similar experiment with a laboratory X-ray diffractometer. Both series of measurements showed a transition from the paraelectric to the ferroelectric state at nearly the same temperature, T c = 225 K. Temperature evolution of the unit-cell parameters and volume are drastically different for the synchrotron and laboratory data. The latter case corresponds to previous reports and shows an expected contraction of the cell on cooling. The data collected with the synchrotron beam show an abnormal nonlinear increase in volume on cooling. Structure analysis shows that this volume increase is accompanied by a suppression of scattering at high angles and an apparent increase of the anisotropic displacement parameters for all atoms; we therefore link these effects to radiation damage accumulated during consecutive data collections. The effects of radiation on the formation of the polar structure of ferroelectric glycinium phosphite is discussed together with the advantages and drawbacks of synchrotron experimentation with fine temperature sampling.


Author(s):  
Matthias Weil

In comparison with the previous structure determination of K2Mg3(OH)2(SO4)3(H2O)2, dipotassium trimagnesium dihydroxide tris(sulfate) dihydrate, from laboratory powder X-ray diffraction data [Kubel & Cabaret-Lampin (2013). Z. Anorg. Allg. Chem. 639, 1782–1786], the present redetermination against CCD single-crystal data has allowed for the modelling of all non-H atoms with anisotropic displacement parameters. As well as higher accuracy and precision in terms of bond lengths and angles, the clear localization of the H-atom positions leads also to a reasonable hydrogen-bonding scheme for this hydroxy hydrate. The structure consists of (100) sheets composed of corner- and edge-sharing [MgO6] octahedra and sulfate tetrahedra. Adjacent sheets are linked by the potassium cations and a hydrogen bond of medium strength involving the water molecule. The title compound is isotypic with its CoII and MnII analogues: the three K2 M 3(OH)2(SO4)3(H2O)2 (M = Mg, Co, Mn) structures are quantitatively compared.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Damian Mroz ◽  
Ruimin Wang ◽  
Ulli Englert ◽  
Richard Dronskowski

Advanced theory matches advanced experiment: anisotropic displacement parameters for tartaric acid have been calculated in the quasi-harmonic approximation and determined experimentally based on a charge density study.


Author(s):  
Hagen Poddig ◽  
Thomas Doert

The two-dimensionally incommensurately modulated crystal structures of the compounds RETe1.94(1) (RE = La, Pr, Nd) were investigated by single-crystal X-ray diffraction. The compounds crystallize in the tetragonal superspace group P4/n(αβ½)00(−βα½)00 (No. 85.2.58.2) with q 1 = αa*+βb*+½c* and q 2 = −βa*+αb*+½c* and share a common motif of an alternating stacking of a puckered [RETe] layer and a planar [Te] layer. This basic structural motif is observed for all reported compounds with unusually large anisotropic displacement parameters in the planar [Te] layer. Taking the modulation into account, a distortion from this perfect square planar net is noted along with vacancies in the planar [Te] layer. The distortion leads to the formation of different discrete anions, like Te2−, Te2 2− and Te3 2−, similar to previously reported structures for RE X 2–δ compounds (RE = trivalent rare earth metal, X = S, Se, Te). The Te–Te distances in the modulated [Te] layer are found in a narrow range as compared to those in the corresponding sulfides and selenides.


Author(s):  
Graham King

The crystal structures of three polymorphs of K3GaF6 and the transition temperatures between these phases are reported for the first time. Synchrotron powder diffraction data clearly show that at 300 K α-K3GaF6 crystallizes in space group I41/a with lattice parameters of a = 19.1124 (3) Å, c = 34.4165 (6) Å, and Z = 80. The structure is based on the double perovskite but with two fifths of the GaF6 octahedra rotated by ∼45°. This phase remains stable until ∼460 K, above which it undergoes a transition to I4/m with lattice parameters of a = 13.6088 (4) Å, c = 8.6764 (3) Å, and Z = 10 at 485 K. β-K3GaF6 has a similar structure but with only one fifth of the GaF6 rotated by ∼45°. Above ∼510 K, the cubic Fm 3 m δ-K3GaF6 structure is stabilized, with a lattice parameter of a = 8.6649 (1) Å at 550 K. The F atoms have highly anisotropic displacement parameters which suggest dynamic octahedral tilting is occurring. This work expands the fairly small group of double perovskite compounds which display non-cooperative patterns of octahedral tilting.


Author(s):  
Andrew T. Boothroyd

In this chapter, aspects of the planning and optimization of a neutron scattering experiment are covered, including attenuation, multiple scattering, data normalization, counting statistics, resolution, corrections for polarization analysis, and spurions. Practical aspects of diffraction experiments are described, including instrumentation, Rietveld refinement, anisotropic displacement parameters, the Ewald sphere construction, Lorentz factors, extinction and multiple scattering. Practical aspects of spectroscopy are also described, including triple-axis, time-of-flight and backscattering spectrometers, direct and indirect geometry, and some specific points arising in time-of flight inelastic scattering.


2020 ◽  
Vol 76 (6) ◽  
pp. 591-597
Author(s):  
Damian Mroz ◽  
Ruimin Wang ◽  
Ulli Englert ◽  
Richard Dronskowski

1-(Chloromethyl)-3-nitrobenzene, C7H6NClO2, and 1-(bromomethyl)-3-nitrobenzene, C7H6NBrO2, were chosen as test compounds for benchmarking anisotropic displacement parameters (ADPs) calculated from first principles in the harmonic approximation. Crystals of these compounds are isomorphous, and theory predicted similar ADPs for both. In-house diffraction experiments with Mo Kα radiation were in apparent contradiction to this theoretical result, with experimentally observed ADPs significantly larger for the bromo derivative. In contrast, the experimental and theoretical ADPs for the lighter congener matched reasonably well. As all usual quality indicators for both sets of experimental data were satisfactory, complementary diffraction experiments were performed at a synchrotron beamline with shorter wavelength. Refinements based on these intensity data gave very similar ADPs for both compounds and were thus in agreement with the earlier in-house results for the chloro derivative and the predictions of theory. We speculate that strong absorption by the heavy halogen may be the reason for the observed discrepancy.


Sign in / Sign up

Export Citation Format

Share Document