scholarly journals Numerical simulation of the unsteady stator‐rotor interaction in a low‐speed axial fan including experimental validation

Author(s):  
J.M. Fernández Oro ◽  
K.M. Argüelles Diaz ◽  
C. Santolaria Morros ◽  
M. Galdo Vega
2015 ◽  
Vol 57 (7-8) ◽  
pp. 628-634
Author(s):  
Jing Chen ◽  
Liying Wang ◽  
Zhendong Shi ◽  
Zhen Dai ◽  
Meiqing Guo

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Aurélie Ortolan ◽  
Suk-Kee Courty-Audren ◽  
Nicolas Binder ◽  
Xavier Carbonneau ◽  
Yannick Bousquet ◽  
...  

A steady mixing plane approach is compared with the time-averaged solution of an unsteady full annulus calculation for a conventional fan operating at load-controlled windmill. The objective is to assess the added value of a complete unsteady calculation compared with a more classical approach, especially concerning the effect of the spatial and temporal periodicity release in such an unusual operation as windmill. Experiment with global steady measurements and rotor radial characterizations was conducted. Numerical analysis demonstrates that windmilling global performances obtained with the time-averaged solution of the unsteady simulation are not far different from the steady case, especially in the rotor. Some differences arise in the stator, particularly regarding the velocity field. Temporal periodicity release in this row has clearly a significant effect on the flow unsteady response. A detailed analysis highlights that generic patterns of windmilling flows recorded on a steady approach are also reported on the unsteady case.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Chetan Mistry ◽  
A. M. Pradeep

The influence of circumferential inflow distorted on the performance and flow behavior of a high aspect ratio, low speed contra rotating fan is reported in this paper. The total pressure at the inlet is artificially distorted by means of 90 deg mesh sector with a porosity of 0.70. The performance of the contra rotating fan was studied under different speed combinations of the two rotors under clean and distorted inflow conditions. Detailed flow analyses were conducted under design and off-design conditions. In order to understand the effect of distortion and its extent, the distortion sector was rotated circumferentially at intervals of 15 deg to cover the entire annulus. Detailed measurements of the total pressure, velocity components, and flow angles were carried out at the inlet of the first rotor, between the two rotors, and at the exit of the second rotor. The study reveals a few interesting aspects on the effect of inflow distortion on the performance of a contra-rotating stage. For the design speed combination and lower rotational speed of rotor-2, a reduction in the overall operating range with a shift of the peak pressure point towards higher mass flow rate, was observed. It is observed that the effect of inflow distortion at the inlet of rotor-1 gets transferred in the direction of rotor-1 rotation and spreads across the entire annulus. The opposite sense of rotation of rotor-2 causes the distortion effect to get transferred in the direction of rotation of rotor-2 with an associated reduction in the total pressure near the hub. It is observed that a higher rotational speed of the second rotor has a beneficial effect on the overall performance due to the strong suction by generated higher rotational speed of rotor-2.


Sign in / Sign up

Export Citation Format

Share Document