A multimedia case-based reasoning framework for assembly sequence planning

2019 ◽  
Vol 39 (4) ◽  
pp. 673-684
Author(s):  
Junhao Chen ◽  
Xiaoliang Jia

Purpose Assembly sequence planning (ASP) is a crucial job during assembly process design. However, it is still difficult to reuse the existing solution to solve a new ASP problem. In particular, with the rapid development of digital technologies, the reusable assembly information of an existing solution is not concentrated in one multimedia but dispersed in multiple heterogeneous multimedia, e.g. text, three-dimensional graphics, even images and videos. This paper aims to propose a multimedia case (MC)-based reasoning framework to solve ASP by reusing the existing solution whose assembly information is dispersed in multimedia. Design/methodology/approach The proposed framework is designed with the introduction of the MC. An MC seamlessly integrates the dispersed assembly information of an existing solution. Under the proposed concept and architecture, the assembly information of an existing solution is extracted to build assembly descriptors of multimedia. Therefore, the MC is captured by organizing the assembly descriptors of corresponding multimedia. Findings By means of the framework proposed, it is possible to reuse the existing solution whose assembly information is dispersed in multimedia to solve ASP. Moreover, the extraction method of assembly information can flexibly parse most of the multimedia. Finally, the MC has the capability to represent the existing solution by collecting dispersed assembly information. Originality/value The proposed framework can discover the similar existing solution and avoid the potential failures confronted in the past so that the feasibility of ASP result can be improved as much as possible.

2019 ◽  
Vol 40 (2) ◽  
pp. 361-375 ◽  
Author(s):  
Nan Zhang ◽  
Zhenyu Liu ◽  
Chan Qiu ◽  
Weifei Hu ◽  
Jianrong Tan

Purpose Assembly sequence planning (ASP) plays a vital role in assembly process because it directly influences the feasibility, cost and time of the assembly process. The purpose of this study is to solve ASP problem more efficiently than current algorithms. Design/methodology/approach A novel assembly subsets prediction method based on precedence graph is proposed to solve the ASP problem. The proposed method adopts the idea of local to whole and integrates a simplified firework algorithm. First, assembly subsets are generated as initial fireworks. Then, each firework explodes to several sparks with higher-level assembly subsets and new fireworks are selected for next generation according to selection strategy. Finally, iterating the algorithm until complete and feasible solutions are generated. Findings The proposed method performs better in comparison with state-of-the-art algorithms because of the balance of exploration (fireworks) and exploitation (sparks). The size of initial fireworks population determines the diversity of the solution, so assembly subsets prediction method based on precedence graph (ASPM-PG) can explore the solution space. The size of sparks controls the exploitation ability of ASPM-PG; with more sparks, the direction of a specific firework can be adequately exploited. Practical implications The proposed method is with simple structure and high efficiency. It is anticipated that using the proposed method can effectively improve the efficiency of ASP and reduce computing cost for industrial applications. Originality/value The proposed method finds the optimal sequence in the construction process of assembly sequence rather than adjusting order of a complete assembly sequence in traditional methods. Moreover, a simplified firework algorithm with new operators is introduced. Two basic size parameters are also analyzed to explain the proposed method.


2020 ◽  
Vol 40 (5) ◽  
pp. 779-787
Author(s):  
Anil Kumar Gulivindala ◽  
M.V.A. Raju Bahubalendruni ◽  
S.S. Vara Prasad Varupala ◽  
Sankaranarayanasamy K.

Purpose Parallel assembly sequence planning (PASP) reduces the overall assembly effort and time at the product development stage. Methodological difficulties at framework development and computational issues at their implementation made the PASP complex to achieve. This paper aims to propose a novel stability concept for subassembly detection to minimize the complexities in PASP. Design/methodology/approach In this research, a heuristic method is developed to identify, represent and implement the stability predicate to perform subassembly detection and assembly sequence planning (ASP) at the further stages. Stability is organized into static, dynamic, enriched and no stability between the mating assembly parts. The combination of parts that possesses higher fitness is promoted to formulate the final solution about PASP. Findings The results obtained by applying the proposed concept on complex configurations revealed that stability predicate plays a dominant role in valid subassembly detection and final sequence generation further. Originality/value The value of the presented study lies in the three types of stability conditions and effective integration to existed ASP method. Unlike the existed heuristics in subassembly detection, the proposed concept identifies the parallel subassemblies during ASP.


2013 ◽  
Vol 328 ◽  
pp. 9-16 ◽  
Author(s):  
Zhan Lei Sun ◽  
Peng Fei Han ◽  
Gang Zhao

Assembly Sequence Planning (ASP) is an essential question for aircraft assembly process design. Modern aircraft assembly contains plenty of complex shape components, which have so many assembly features to ensure, this leads to a large number of feasible assembly sequences using traditional sequence planning algorithms; and it is hard to evaluate the contribution to assembly quality for every sequence. A methodology called Key Characteristics Based ASP is proposed in this paper, which can significantly reduce unavailable sequences and ensure key features for quality in assembly process designing compared with previous methods. The methodology focuses on the final assembly quality and considers it as Assembly Key Characteristics (AKCs) in the beginning of assembly process design. With tools such as AKCs decomposition, Datum Flow Chain, precedence constraint matrix, the methodology describes the main process for ASP. To verify the technologys effectiveness, this paper presents an application of the algorithm in an aircraft component assembly by an 863 program.


2011 ◽  
Vol 10 (02) ◽  
pp. 277-291 ◽  
Author(s):  
ALFADHLANI ◽  
T. M. A. ARI SAMADHI ◽  
ANAS MA'RUF ◽  
ISA SETIASYAH TOHA

Assembly sequence planning of a product involves several steps, including generation of precedence constraints, generation of assembly sequences, and selection of assembly sequences. Generation and selection of assembly sequences should be able to guarantee the feasibility of assembly. Assembly will be feasible if there is no collision between components when assembled. Detection of collision-free path of assembly can be done in an automated way. There are a number of collision detection methods that have been developed, but the method requires a complicated process of data geometry analysis. This paper proposes a method for detecting a collision-free path of the assembly component in a more simple way. Geometrical data required, taken from the three-dimensional (3D) solid drawing in the form of stacked drawing in computer-aided design (CAD) systems. Retrieval of geometrical data of components and detection of the collision-free path of an assembly were done in an automated way, directly from the CAD system.


2020 ◽  
Vol 40 (4) ◽  
pp. 541-552
Author(s):  
Wenlei Zhang ◽  
Mingxu Ma ◽  
Haiyan Li ◽  
Jiapeng Yu ◽  
Zhenwei Zhang

Purpose The purpose of this paper is to discriminate fake interference caused by polygonal approximation so as to achieve accurate assembly sequence planning and assembly simulation. Design/methodology/approach An approximation zone model is proposed to formulate polygonal approximation. Fake interference is discriminated from hard interference by evaluating if polygonal models intersect within corresponding approximation zones. To reduce the computation, the surface-surface, surface-end face and end face-end face intersection test methods have been developed to evaluate the intersection and obtain collision data. An updated collision detection algorithm with this method is presented, which is implemented by a system named AutoAssem. Findings This method has been applied to a set of products such as a valve for assembly interference matrix generation, static and dynamic collision detection. The results show that it ensures the accuracy of assembly sequence planning and assembly simulation for polygonal models. Practical implications This method facilitates assembly design in the virtual environment with polygonal models. It can also be applied to computer aided design systems to achieve quick and accurate collision detection. Originality/value Fake interference between polygonal models may result in serious errors in assembly sequence planning and assembly simulation. Assembly zone model and novel polygon intersection verification methods have been proposed to effectively tackle this problem. Compared to current methods, this method considers valid penetration direction and approximation difference, does not need to process complicated auxiliary data and can be easily integrated with current collision detection methods.


2019 ◽  
Vol 40 (2) ◽  
pp. 319-334 ◽  
Author(s):  
Yanru Zhong ◽  
Chaohao Jiang ◽  
Yuchu Qin ◽  
Guoyu Yang ◽  
Meifa Huang ◽  
...  

Purpose The purpose of this paper is to present and develop an ontology-based approach for automatic generation of assembly sequences. Design/methodology/approach In this approach, an assembly sequence planning ontology is constructed to represent the structure and interrelationship of product geometry information and assembly process information. In the constructed ontology, certain reasoning rules are defined to describe the knowledge and experience. Based on the ontology with reasoning rules, the algorithm for automatically generating assembly sequences is designed and implemented. Findings The effectiveness of this approach is verified via applying it to generate the assembly sequences of a gear reducer. Originality/value The main contribution of the paper is presenting and developing an ontology-based approach for automatically generating assembly sequences. This approach can provide a feasible solution for the issue that mathematics-based assembly sequence generation approaches have great difficulty in explicitly representing assembly experience and knowledge.


2017 ◽  
Vol 37 (2) ◽  
pp. 238-248 ◽  
Author(s):  
Mohd Fadzil Faisae Ab Rashid

Purpose This paper aims to optimize the assembly sequence planning (ASP) problem using a proposed hybrid algorithm based on Ant Colony Optimization (ACO) and Gray Wolf Optimizer (GWO). The proposed Hybrid Ant-Wolf Algorithm (HAWA) is designed to overcome premature convergence in ACO. Design/methodology/approach The ASP problem is formulated by using task-based representation. The HAWA adopts a global pheromone-updating procedure using the leadership hierarchy concept from the GWO into the ACO to enhance the algorithm performance. In GWO, three leaders are assigned to guide the search direction, instead of a single leader in most of the metaheuristic algorithms. Three assembly case studies used to test the algorithm performance. Findings The proposed HAWA performed better in comparison to the Genetic Algorithm, ACO and GWO because of the balance between exploration and exploitation. The best solution guides the search direction, while the neighboring solutions from leadership hierarchy concept avoid the algorithm trapped in a local optimum. Originality/value The originality of this research is on the proposed HAWA. In addition to the standard pheromone-updating procedure, a global pheromone-updating procedure is introduced, which adopted leadership hierarchy concept from GWO.


2019 ◽  
Vol 40 (1) ◽  
pp. 65-75
Author(s):  
Minghui Zhao ◽  
Xian Guo ◽  
Xuebo Zhang ◽  
Yongchun Fang ◽  
Yongsheng Ou

Purpose This paper aims to automatically plan sequence for complex assembly products and improve assembly efficiency. Design/methodology/approach An assembly sequence planning system for workpieces (ASPW) based on deep reinforcement learning is proposed in this paper. However, there exist enormous challenges for using DRL to this problem due to the sparse reward and the lack of training environment. In this paper, a novel ASPW-DQN algorithm is proposed and a training platform is built to overcome these challenges. Findings The system can get a good decision-making result and a generalized model suitable for other assembly problems. The experiments conducted in Gazebo show good results and great potential of this approach. Originality/value The proposed ASPW-DQN unites the curriculum learning and parameter transfer, which can avoid the explosive growth of assembly relations and improve system efficiency. It is combined with realistic physics simulation engine Gazebo to provide required training environment. Additionally with the effect of deep neural networks, the result can be easily applied to other similar tasks.


Sign in / Sign up

Export Citation Format

Share Document