simulation engine
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 67)

H-INDEX

18
(FIVE YEARS 6)

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Xiang Li ◽  
Sha Liu ◽  
Yichao Sun

Building energy efficiency, which is critical in reducing environmental impact, has become one of the most important objectives of building designs. In order to precisely express the goals of building designs, and help decision makers estimate the ultimate performance of design schemes in advance when searching for the optimal building design, the Goal Programming Model (GPM) is introduced in this study to provide a solution for explicit design objective delivery and multi-stakeholder involved decision-making support. In this proposed method, EnergyPlusTM works as a simulation engine to search for the relationship between design parameter combinations and building energy consumption. Simultaneously, Genetic Algorithm (GA) is used to improve the efficiency of overall building energy performance optimization by processing multiple iterations. A case study with five possible design scenarios was dedicated in this study to implement the proposed optimization method, and the optimization results verified the capacity of the established GP-based optimization method to satisfy various design requirements for decision makers and/or stakeholders, especially in facing the hierarchical objectives with different priorities. In this case, the envelope-related variables, including the exterior wall and window, serve as optimization objectives. The optimization is carried out under the ideal air conditioning system, considering different energy usage patterns. Meanwhile, comparing with the vague and restricted expression of objectives in multi-objective optimization, the proposed GP-based optimization method provides explicit trade-off relationships among various objectives for designers, which improves the practical value of the optimized designs, so as to ensure the project success and facilitate the development of green buildings.


Author(s):  
Mina Rahimian ◽  
Jose Pinto Duarte ◽  
Lisa Domenica Iulo

Abstract This paper discusses the development of an experimental software prototype that uses surrogate models for predicting the monthly energy consumption of urban-scale community design scenarios in real time. The surrogate models were prepared by training artificial neural networks on datasets of urban form and monthly energy consumption values of all zip codes in San Diego county. The surrogate models were then used as the simulation engine of a generative urban design tool, which generates hypothetical communities in San Diego following the county's existing urban typologies and then estimates the monthly energy consumption value of each generated design option. This paper and developed software prototype is part of a larger research project that evaluates the energy performance of community microgrids via their urban spatial configurations. This prototype takes the first step in introducing a new set of tools for architects and urban designers with the goal of engaging them in the development process of community microgrids.


2021 ◽  
pp. 27-53
Author(s):  
Kathinka Evers ◽  
Arleen Salles

In this article, we present and analyse the concept of Digital Twin (DT) linked to distinct types of objects (artefacts, natural, inanimate or living) and examine the challenges involved in creating them from a fundamental neuroethics approach that emphasises conceptual analyses. We begin by providing a brief description of DTs and their initial development as models of artefacts and physical inanimate objects, identifying core challenges in building these tools and noting their intended benefits. Next, we describe attempts to build DTs of model living entities, such as hearts, highlighting the novel challenges raised by this shift from DTs of inanimate to DTs of living objects. Against that background, we give an account of contemporary research aiming to develop DTs of the human brain by building "virtual brains", e.g. the simulation engine The Virtual Brain (TVB) as it is carried out in the European Human Brain Project. Since the brain is structurally and functionally the most complex organ in the human body, and our integrated knowledge of its functional architecture remains limited in spite of recent neuroscientific advances, the attempts to create virtual copies of the human brain are correspondingly challenging. We suggest that a clear scientific theoretical structure, conceptual clarity and transparency regarding the methods and goals of this technological development are necessary prerequisites in order to make the project of constructing virtual brains a theoretically promising and socially beneficial scientific, technological and philosophical enterprise.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1813
Author(s):  
Luning Fang ◽  
Ruochun Zhang ◽  
Colin Vanden Vanden Heuvel ◽  
Radu Serban ◽  
Dan Negrut

We report on an open-source, publicly available C++ software module called Chrono::GPU, which uses the Discrete Element Method (DEM) to simulate large granular systems on Graphics Processing Unit (GPU) cards. The solver supports the integration of granular material with geometries defined by triangle meshes, as well as co-simulation with the multi-physics simulation engine Chrono. Chrono::GPU adopts a smooth contact formulation and implements various common contact force models, such as the Hertzian model for normal force and the Mindlin friction force model, which takes into account the history of tangential displacement, rolling frictional torques, and cohesion. We report on the code structure and highlight its use of mixed data types for reducing the memory footprint and increasing simulation speed. We discuss several validation tests (wave propagation, rotating drum, direct shear test, crater test) that compare the simulation results against experimental data or results reported in the literature. In another benchmark test, we demonstrate linear scaling with a problem size up to the GPU memory capacity; specifically, for systems with 130 million DEM elements. The simulation infrastructure is demonstrated in conjunction with simulations of the NASA Curiosity rover, which is currently active on Mars.


Geophysics ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. T469-T485
Author(s):  
Bingbing Sun ◽  
Tariq Alkhalifah

We have developed a pseudoelastic wave equation describing pure pressure waves propagating in elastic media. The pure pressure-mode (P-mode) wave equation uses all of the elastic parameters (such as density and the P- and S-wave velocities). It produces the same amplitude variation with offset (AVO) effects as PP-reflections computed by the conventional elastic wave equation. Because the new wave equation is free of S-waves, it does not require finer grids for simulation. This leads to a significant computational speedup when the ratio of pressure to S-wave velocities is large. We test the performance of our method on a simple synthetic model with high-velocity contrasts. The amplitude admitted by the pseudoelastic pure P-mode wave equation is highly consistent with that associated with the conventional elastic wave equation over a large range of incidence angles. We further verify our method’s robustness and accuracy using a more complex and realistic 2D salt model from the SEG Advanced Modeling Program. The ideal AVO behavior and computational advantage make our wave equation a good candidate as a forward simulation engine for performing elastic full-waveform inversion, especially for marine streamer data sets.


Author(s):  
Lukas Breitwieser ◽  
Ahmad Hesam ◽  
Jean de Montigny ◽  
Vasileios Vavourakis ◽  
Alexandros Iosif ◽  
...  

Abstract Motivation Agent-based modeling is an indispensable tool for studying complex biological systems. However, existing simulation platforms do not always take full advantage of modern hardware and often have a field-specific software design. Results We present a novel simulation platform called BioDynaMo that alleviates both of these problems. BioDynaMo features a modular and high-performance simulation engine. We demonstrate that BioDynaMo can be used to simulate use cases in: neuroscience, oncology, and epidemiology. For each use case we validate our findings with experimental data or an analytical solution. Our performance results show that BioDynaMo performs up to three orders of magnitude faster than the state-of-the-art baselines. This improvement makes it feasible to simulate each use case with one billion agents on a single server, showcasing the potential BioDynaMo has for computational biology research. Availability BioDynaMo is an open-source project under the Apache 2.0 license and is available at www.biodynamo.org. Instructions to reproduce the results are available in supplementary information. Supplementary information Available at https://doi.org/10.5281/zenodo.5121618.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 230
Author(s):  
Liang Chang ◽  
Jixiu Liu ◽  
Zui Chen ◽  
Jie Bai ◽  
Leizheng Shu

In on-orbit services, the relative position and attitude estimation of non-cooperative spacecraft has become the key issues to be solved in many space missions. Because of the lack of prior knowledge about manual marks and the inability to communicate between non-cooperative space targets, the relative position and attitude estimation system poses great challenges in terms of accuracy, intelligence, and power consumptions. To address these issues, this study uses a stereo camera to extract the feature points of a non-cooperative spacecraft. Then, the 3D position of the feature points is calculated according to the camera model to estimate the relationship. The optical flow method is also used to obtain the geometric constraint information between frames. In addition, an extended Kalman filter is used to update the measurement results and obtain more accurate pose optimization results. Moreover, we present a closed-loop simulation system, in which the Unity simulation engine is employed to simulate the relative motion of the spacecraft and binocular vision images, and a JetsonTX2 supercomputer is involved to conduct the proposed autonomous relative navigation algorithm. The simulation results show that our approach can estimate the non-cooperative target’s relative pose accurately.


2021 ◽  
Author(s):  
Aaron Young ◽  
Jay Taves ◽  
Asher Elmquist ◽  
Radu Serban ◽  
Dan Negrut ◽  
...  

Abstract We describe a simulation environment that enables the development and testing of control policies for off-road mobility of autonomous agents. The environment is demonstrated in conjunction with the design and assessment of a reinforcement learning policy that uses sensor fusion and inter-agent communication to enable the movement of mixed convoys of human-driven and autonomous vehicles. Policies are learned on rigid terrain and are subsequently shown to transfer successfully to hard (silt-like) and soft (snow-like) deformable terrains. The enabling simulation environment is developed from the high fidelity, physics-based simulation engine Chrono. Five Chrono modules are employed herein: Chrono::Engine, Chrono::Vehicle, PyChrono, SynChrono and Chrono::Sensor. Vehicle’s are modeled using Chrono::Engine and Chrono::Vehicle and deployed on deformable terrain within the training/testing environment. Utilizing the Python interface to the C++ Chrono API called PyChrono and OpenAI Gym’s supporting infrastructure, training is conducted in a GymChrono learning environment. The GymChrono-generated policy is subsequently deployed for testing in SynChrono, a scalable, cluster-deployable multi-agent testing infrastructure built on MPI. SynChrono facilitates inter-agent communication and maintains time and space coherence between agents. A sensor modeling tool, Chrono::Sensor, supplies sensing data that is used to inform agents during the learning and inference processes. The software stack and the Chrono simulator are both open source. Relevant movies: [1].


Author(s):  
Eric Heiden ◽  
Miles Macklin ◽  
Yashraj Narang ◽  
Dieter Fox ◽  
Animesh Garg ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Robrecht Cannoodt ◽  
Wouter Saelens ◽  
Louise Deconinck ◽  
Yvan Saeys

AbstractWe present dyngen, a multi-modal simulation engine for studying dynamic cellular processes at single-cell resolution. dyngen is more flexible than current single-cell simulation engines, and allows better method development and benchmarking, thereby stimulating development and testing of computational methods. We demonstrate its potential for spearheading computational methods on three applications: aligning cell developmental trajectories, cell-specific regulatory network inference and estimation of RNA velocity.


Sign in / Sign up

Export Citation Format

Share Document