Innovative exploration of safe in-flightcrew escape options

2018 ◽  
Vol 90 (8) ◽  
pp. 1221-1226
Author(s):  
Sreedhar Karunakaran

Purpose The purpose of this paper is to explore various in-flight crew escape options of a prototype transport aircraft and finalize the option offering safest crew egress for different combinations of contingencies and flight conditions. Design/methodology/approach Various egress options were explored through simulation in a computational fluid dynamics (CFD) software using aircraft 3D CAD model and scalable digital mannequins. For this, certain important contingencies which best describe the extreme aircraft behaviour were identified. Crew escape options, which have least external interference in expected egress trajectory, were selected. Several test simulations representing each feasible combination of contingency, escape option and flight condition were simulated. The option which offers safe crew escape in each test case is deemed to be the safest egress option for the test aircraft. Findings Among five options explored, crew escape through forward ventral hatch provided the safest crew escape for all test cases. The selected option was validated for robustness with additional test cases modelling different anthropometric characteristics of 5th and 50th percentile pilot populations with different postures. Originality/value In-flight validation of safe crew escape option is infeasible by actual trial. Exploration of safe crew options for required number of test cases by any analytical method or by wind tunnels tests is tedious, time consuming and extremely expensive. On the other hand, exploration of safest crew option by CFD, besides being first of its kind, provides convenient option to configure, test and validate different test cases with unmatched benefits in time, cost and simplicity.

Author(s):  
Mattia Filippini ◽  
Piergiorgio Alotto ◽  
Alessandro Giust

Purpose The purpose of this paper is to implement the Anderson acceleration for different formulations of eletromagnetic nonlinear problems and analyze the method efficiency and strategies to obtain a fast convergence. Design/methodology/approach The paper is structured as follows: the general class of fixed point nonlinear problems is shown at first, highlighting the requirements for convergence. The acceleration method is then shown with the associated pseudo-code. Finally, the algorithm is tested on different formulations (finite element, finite element/boundary element) and material properties (nonlinear iron, hysteresis models for laminates). The results in terms of convergence and iterations required are compared to the non-accelerated case. Findings The Anderson acceleration provides accelerations up to 75 per cent in the test cases that have been analyzed. For the hysteresis test case, a restart technique is proven to be helpful in analogy to the restarted GMRES technique. Originality/value The acceleration that has been suggested in this paper is rarely adopted for the electromagnetic case (it is normally adopted in the electronic simulation case). The procedure is general and works with different magneto-quasi static formulations as shown in the paper. The obtained accelerations allow to reduce the number of iterations required up to 75 per cent in the benchmark cases. The method is also a good candidate in the hysteresis case, where normally the fixed point schemes are preferred to the Newton ones.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Man Zhang ◽  
Bogdan Marculescu ◽  
Andrea Arcuri

AbstractNowadays, RESTful web services are widely used for building enterprise applications. REST is not a protocol, but rather it defines a set of guidelines on how to design APIs to access and manipulate resources using HTTP over a network. In this paper, we propose an enhanced search-based method for automated system test generation for RESTful web services, by exploiting domain knowledge on the handling of HTTP resources. The proposed techniques use domain knowledge specific to RESTful web services and a set of effective templates to structure test actions (i.e., ordered sequences of HTTP calls) within an individual in the evolutionary search. The action templates are developed based on the semantics of HTTP methods and are used to manipulate the web services’ resources. In addition, we propose five novel sampling strategies with four sampling methods (i.e., resource-based sampling) for the test cases that can use one or more of these templates. The strategies are further supported with a set of new, specialized mutation operators (i.e., resource-based mutation) in the evolutionary search that take into account the use of these resources in the generated test cases. Moreover, we propose a novel dependency handling to detect possible dependencies among the resources in the tested applications. The resource-based sampling and mutations are then enhanced by exploiting the information of these detected dependencies. To evaluate our approach, we implemented it as an extension to the EvoMaster tool, and conducted an empirical study with two selected baselines on 7 open-source and 12 synthetic RESTful web services. Results show that our novel resource-based approach with dependency handling obtains a significant improvement in performance over the baselines, e.g., up to + 130.7% relative improvement (growing from + 27.9% to + 64.3%) on line coverage.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1779
Author(s):  
Wanida Khamprapai ◽  
Cheng-Fa Tsai ◽  
Paohsi Wang ◽  
Chi-En Tsai

Test case generation is an important process in software testing. However, manual generation of test cases is a time-consuming process. Automation can considerably reduce the time required to create adequate test cases for software testing. Genetic algorithms (GAs) are considered to be effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified version of the GA to solve the multicast routing problem in network systems. MSGA can be improved to make it suitable for generating test cases. In this paper, a new algorithm called the enhanced multiple-searching genetic algorithm (EMSGA), which involves a few additional processes for selecting the best chromosomes in the GA process, is proposed. The performance of EMSGA was evaluated through comparison with seven different search-based techniques, including random search. All algorithms were implemented in EvoSuite, which is a tool for automatic generation of test cases. The experimental results showed that EMSGA increased the efficiency of testing when compared with conventional algorithms and could detect more faults. Because of its superior performance compared with that of existing algorithms, EMSGA can enable seamless automation of software testing, thereby facilitating the development of different software packages.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Kevin M. Betts ◽  
Mikel D. Petty

Autonomous systems must successfully operate in complex time-varying spatial environments even when dealing with system faults that may occur during a mission. Consequently, evaluating the robustness, or ability to operate correctly under unexpected conditions, of autonomous vehicle control software is an increasingly important issue in software testing. New methods to automatically generate test cases for robustness testing of autonomous vehicle control software in closed-loop simulation are needed. Search-based testing techniques were used to automatically generate test cases, consisting of initial conditions and fault sequences, intended to challenge the control software more than test cases generated using current methods. Two different search-based testing methods, genetic algorithms and surrogate-based optimization, were used to generate test cases for a simulated unmanned aerial vehicle attempting to fly through an entryway. The effectiveness of the search-based methods in generating challenging test cases was compared to both a truth reference (full combinatorial testing) and the method most commonly used today (Monte Carlo testing). The search-based testing techniques demonstrated better performance than Monte Carlo testing for both of the test case generation performance metrics: (1) finding the single most challenging test case and (2) finding the set of fifty test cases with the highest mean degree of challenge.


2018 ◽  
Vol 70 (4) ◽  
pp. 789-804 ◽  
Author(s):  
M.M. Shahin ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Md. Arefin Kowser ◽  
Uttam Kumar Debnath ◽  
M.H. Monir

Purpose The purposes of the present study are to ensure higher sustainability of journal bearings under different applied loads and to observe bearing performances such as elastic strain, total deformation and stress formation. Design/methodology/approach A journal bearing test rig was used to determine the effect of the applied load on the bearing friction, film thickness, lubricant film pressure, etc. A steady-state analysis was performed to obtain the bearing performance. Findings An efficient aspect ratio (L/D) range was obtained to increase the durability or the stability of the bearing while the bearing is in the working condition by using SAE 5W-30 oil. The results from the study were compared with previous studies in which different types of oil and water, such as Newtonian fluid (NF), magnetorheological fluid (MRF) and nonmagnetorheological fluid (NMRF), were used as the lubricant. To ensure a preferable aspect ratio range (0.25-0.50), a computational fluid dynamics (CFD) analysis was conducted by ANSYS; the results show a lower elastic strain and deformation within the preferable aspect ratio (0.25-0.50) rather than a higher aspect ratio using the SAE 5W-30 oil. Originality/value It is expected that the findings of this study will contribute to the improvement of the bearing design and the bearing lubricating system.


Author(s):  
RUBING HUANG ◽  
XIAODONG XIE ◽  
DAVE TOWEY ◽  
TSONG YUEH CHEN ◽  
YANSHENG LU ◽  
...  

Combinatorial interaction testing is a well-recognized testing method, and has been widely applied in practice, often with the assumption that all test cases in a combinatorial test suite have the same fault detection capability. However, when testing resources are limited, an alternative assumption may be that some test cases are more likely to reveal failure, thus making the order of executing the test cases critical. To improve testing cost-effectiveness, prioritization of combinatorial test cases is employed. The most popular approach is based on interaction coverage, which prioritizes combinatorial test cases by repeatedly choosing an unexecuted test case that covers the largest number of uncovered parameter value combinations of a given strength (level of interaction among parameters). However, this approach suffers from some drawbacks. Based on previous observations that the majority of faults in practical systems can usually be triggered with parameter interactions of small strengths, we propose a new strategy of prioritizing combinatorial test cases by incrementally adjusting the strength values. Experimental results show that our method performs better than the random prioritization technique and the technique of prioritizing combinatorial test suites according to test case generation order, and has better performance than the interaction-coverage-based test prioritization technique in most cases.


Author(s):  
Arpita Dutta ◽  
Amit Jha ◽  
Rajib Mall

Fault localization techniques aim to localize faulty statements using the information gathered from both passed and failed test cases. We present a mutation-based fault localization technique called MuSim. MuSim identifies the faulty statement based on its computed proximity to different mutants. We study the performance of MuSim by using four different similarity metrics. To satisfactorily measure the effectiveness of our proposed approach, we present a new evaluation metric called Mut_Score. Based on this metric, on an average, MuSim is 33.21% more effective than existing fault localization techniques such as DStar, Tarantula, Crosstab, Ochiai.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yonghu Wang ◽  
Ray C. Chang ◽  
Wei Jiang

Purpose The purpose of this paper is to present a quick inspection method based on the post-flight data to examine static aeroelastic behavior for transport aircraft subjected to instantaneous high g-loads. Design/methodology/approach In the present study, the numerical approach of static aeroelasticity and two verified cases will be presented. The non-linear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling of artificial intelligence techniques based on post-flight data. The first and second derivatives of flight dynamic and static aeroelastic behaviors, respectively, are then estimated by using these aerodynamic models. Findings The flight dynamic and static aeroelastic behaviors with instantaneous high g-load for the two transports will be analyzed and make a comparison study. The circumstance of turbulence encounter of the new twin-jet is much serious than that of four-jet transport aircraft, but the characteristic of stability and controllability for the new twin-jet is better than those of the four-jet transport aircraft; the new twin-jet transport is also shown to have very small aeroelastic effects. The static aeroelastic behaviors for the two different types can be assessed by using this method. Practical implications As the present study uses the flight data stored in a quick access recorder, an intrusive structural inspection of the post-flight can be avoided. A tentative conclusion is to prove that this method can be adapted to examine the static aeroelastic effects for transport aircraft of different weights, different sizes and different service years in tracking static aeroelastic behavior of existing different types of aircraft. In future research, one can consider to have more issues of other types of aircraft with high composite structure weight. Originality/value This method can be used to assist airlines to monitor the variations of flight dynamic and static aeroelastic behaviors as a complementary tool for management to improve aviation safety, operation and operational efficiency.


Author(s):  
Jason D. Miller ◽  
David J. Buckmaster ◽  
Katherine Hart ◽  
Timothy J. Held ◽  
David Thimsen ◽  
...  

Increasing the efficiency of coal-fired power plants is vital to reducing electricity costs and emissions. Power cycles employing supercritical carbon dioxide (sCO2) as the working fluid have the potential to increase power cycle efficiency by 3–5% points over state-of-the-art oxy-combustion steam-Rankine cycles operating under comparable conditions. To date, the majority of studies have focused on the integration and optimization of sCO2 power cycles in waste heat, solar, or nuclear applications. The goal of this study is to demonstrate the potential of sCO2 power cycles, and quantify the power cycle efficiency gains that can be achieved versus the state-of-the-art steam-Rankine cycles employed in oxy-fired coal power plants. Turbine inlet conditions were varied among the sCO2 test cases and compared with existing Department of Energy (DOE)/National Energy Technology6 Laboratory (NETL) steam base cases. Two separate sCO2 test cases were considered and the associated flow sheets developed. The turbine inlet conditions for this study were chosen to match conditions in a coal-fired ultra-supercritical steam plant (Tinlet = 593°C, Pinlet = 24.1 MPa) and an advanced ultra-supercritical steam plant (Tinlet = 730°C, Pinlet = 27.6 MPa). A plant size of 550 MWe, was selected to match available information on existing DOE/NETL bases cases. The effects of cycle architecture, combustion-air preheater temperature, and cooling source type were considered subject to comparable heat source and reference conditions taken from the steam Rankine reference cases. Combinations and variants of sCO2 power cycles — including cascade and recompression and variants with multiple reheat and compression steps — were considered with varying heat-rejection subsystems — air-cooled, direct cooling tower, and indirect-loop cooling tower. Where appropriate, combustion air preheater inlet temperature was also varied. Through use of a multivariate nonlinear optimization design process that considers both performance and economic impacts, curves of minimum cost versus efficiency were generated for each sCO2 test case and combination of architecture and operational choices. These curves indicate both peak theoretical efficiency and suggest practical limits based on incremental cost versus performance. For a given test case, results for individual architectural and operational options give insight to cost and performance improvements from step-changes in system complexity and design, allowing down selection of candidate architectures. Optimized designs for each test case were then selected based on practical efficiency limits within the remaining candidate architectures and compared to the relevant baseline steam plant. sCO2 cycle flowsheets are presented for each optimized design.


Sign in / Sign up

Export Citation Format

Share Document