static aeroelasticity
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
pp. 5-52
Author(s):  
Earl H. Dowell

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
JinYang Li ◽  
JunLi Wang ◽  
ZhiGui Ren ◽  
WeiFeng Wei

In this paper, in order to understand the influence of the unbalanced coefficient of composite laminates on the static aeroelasticity of high aspect wings, a series of numerical simulation calculations were carried out, and this work wants to provide some reference for the structural design of aircraft. Considering the influence of geometric nonlinearity, the unidirectional fluid-solid coupling calculation method based on loose coupling is used to control the change of unbalanced coefficient of laminates on the basis of layering angle, layering thickness, and layering region, so as to observe the changes caused to the wings. The relationship between the unbalanced coefficient and the constant thickness layup and the variable thickness layup with 0° and ±45° layup angles was studied, respectively. Then, the layup angle of 90° was added to study the influence of the unbalanced coefficient on the static aeroelasticity of the wing structure with the change of the layup angle and the different choice of layup region. The results show that the deformation is the smallest when the unbalanced coefficient is 0.5, and the deformation trend is evenly distributed along both sides when the unbalanced coefficient is 0.5. When the unbalanced coefficient is changed, adding the 90° layup angle can significantly reduce the overall deformation of the wing and show different sensitivity characteristics to different layup areas. The increase of the unbalanced coefficient makes the chordal displacement gradually change from linear distribution to nonlinear distribution along the spread direction, and the displacement will gradually decrease.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yonghu Wang ◽  
Ray C. Chang ◽  
Wei Jiang

Purpose The purpose of this paper is to present a quick inspection method based on the post-flight data to examine static aeroelastic behavior for transport aircraft subjected to instantaneous high g-loads. Design/methodology/approach In the present study, the numerical approach of static aeroelasticity and two verified cases will be presented. The non-linear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling of artificial intelligence techniques based on post-flight data. The first and second derivatives of flight dynamic and static aeroelastic behaviors, respectively, are then estimated by using these aerodynamic models. Findings The flight dynamic and static aeroelastic behaviors with instantaneous high g-load for the two transports will be analyzed and make a comparison study. The circumstance of turbulence encounter of the new twin-jet is much serious than that of four-jet transport aircraft, but the characteristic of stability and controllability for the new twin-jet is better than those of the four-jet transport aircraft; the new twin-jet transport is also shown to have very small aeroelastic effects. The static aeroelastic behaviors for the two different types can be assessed by using this method. Practical implications As the present study uses the flight data stored in a quick access recorder, an intrusive structural inspection of the post-flight can be avoided. A tentative conclusion is to prove that this method can be adapted to examine the static aeroelastic effects for transport aircraft of different weights, different sizes and different service years in tracking static aeroelastic behavior of existing different types of aircraft. In future research, one can consider to have more issues of other types of aircraft with high composite structure weight. Originality/value This method can be used to assist airlines to monitor the variations of flight dynamic and static aeroelastic behaviors as a complementary tool for management to improve aviation safety, operation and operational efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Changrong Zhang ◽  
Hongtao Guo ◽  
Binbin Lv ◽  
Jun Zha ◽  
Li Yu

Diamond back wing is subjected to large deformation while gliding, which significantly changes characteristics of the lift as well as the static stability. For this reason, conventional rigid aircraft assumption cannot meet the requirements of the aerodynamic analysis of such aircrafts for accuracy. In this paper, based on CFD/CSD methods, the static aeroelasticity of a small diameter bomb with diamond back wing was studied. The results showed that static aeroelastic effects cause the slope of lift line to drop by 21% and the aerodynamic centre to move backwards by a 1.5% bomb body length, which will deviate the actual flight performance from the design point, thereby decreasing the cruise efficiency and the cruise range.


Author(s):  
Xueyuan Nie

Abstract A nonlinear static aeroelastic methodology based on the coupled CFD/CSD approach has been developed to study the geometrical nonlinear aeroelastic behaviors of high-aspect-ratio or multi-material flexible aerial vehicles under aerodynamic loads. The Reynolds-averaged Navier–Stokes solver combined with the three-dimensional finite-element nonlinear solver is used to perform the fluid-structure coupling simulation. The interpolation technique for data transfer between the aerodynamic and structural modules employs radial basis function algorithm as well as dynamic mesh deformation. A high-aspect-ratio structure with multi-material is modeled by the finite element method to investigate the effects of geometrical nonlinearity on the aeroelastic behavior. Numerical simulations of the linear and nonlinear static aeroelasticity were conducted at transonic regime with different angles of attack. By comparing the aeroelastic behaviors of linear and nonlinear structure, it shows that geometrical nonlinearity plays an important role for flexible high-aspect-ratio wings undergoing the large static aeroelastic deformation and should be taken into account in aeroelastic analysis for such structures.


2021 ◽  
Author(s):  
M. N. Setiawan ◽  
E. R. Suryana ◽  
Munadi

Aerospace ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 164
Author(s):  
Angelos Kafkas ◽  
George Lampeas

Current technology in evaluating the aeroelastic behavior of aerospace structures is based on the staggered coupling between structural and low fidelity linearized aerodynamic solvers, which has inherent limitations, although tried and trusted outside the transonic region. These limitations arise from the assumptions in the formulation of linearized aerodynamics and the lower fidelity in the description of the flowfield surrounding the structure. The validity of low fidelity aerodynamics also degrades fast with the deviation from a typical aerodynamic shape due to the inclusion of various control devices, gaps, or discontinuities. As innovative wings tend to become more flexible and also include a variety of morphing devices, it is expected that using low fidelity linearized aerodynamics in aeroelastic analysis will tend to induce higher levels of uncertainty in the results. An obvious solution to these issues is to use high fidelity aerodynamics. However, using high fidelity aerodynamics incurs a very high computational cost. Various formulations of reduced order models have shown promising results in reducing the computational cost. In the present work, the static aeroelastic behavior of three characteristic aeroelastic problems is obtained using both a full three-dimensional staggered coupled scheme and a time domain Volterra series based reduced order model (ROM). The reduced order model’s ability to remain valid for a wide range of dynamic pressures around a specific Mach number (and Reynolds number regime if viscous flow is considered) and the capability to modify structural parameters such as damping ratios and natural frequencies are highlighted.


2020 ◽  
Vol 22 (4) ◽  
pp. 959-970
Author(s):  
Junli Wang ◽  
Shuai Lei ◽  
Tuolei Li ◽  
Wensheng Zhang ◽  
Zhigui Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document