The effects of flow separation on a lambda wing aerodynamics

2019 ◽  
Vol 91 (8) ◽  
pp. 1100-1112 ◽  
Author(s):  
Mehdi Dadkhah ◽  
Mehran Masdari ◽  
Mohammad Ali Vaziri ◽  
Mojtaba Tahani

Purpose In this paper, experimental and numerical results of a lambda wing have been compared. The purpose of this paper is to study the behaviour of lambda wings using a CFD tool and to consider different numerical models to obtain the most accurate results. As far as the consideration of numerical methods is concerned, the main focus is on the evaluation of computational methods for an accurate prediction of contingent leading edge vortices’ path and the flow separation occurring because of the burst of these vortices on the wing. Design/methodology/approach Experimental tests are performed in a closed-circuit wind tunnel at the Reynolds number of 6 × 105 and angles of attack (AOA) ranging from 0 to 10 degrees. Investigated turbulence models in this study are Reynolds Averaged Navior–Stokes (RANS) models in a steady state. To compare the accuracy of the turbulence models with respect to experimental results, sensitivity study of these models has been plotted in bar charts. Findings The results illustrate that the leading edge vortex on this lambda wing is unstable and disappears soon. The effect of this disappearance is obvious by an increase in local drag coefficient in the junction of inner and outer wings. Streamlines on the upper surface of the wing show that at AOA higher than 8 degrees, the absence of an intense leading edge vortex leads to a local flow separation on the outer wing and a reverse in the flow. Research limitations/implications Results obtained from the behaviour study of transition (TSS) turbulence model are more compatible with experimental findings. This model predicts the drag coefficient of the wing with the highest accuracy. Of all considered turbulence models, the Spalart model was not able to accurately predict the non-linearity of drag and pitching moment coefficients. Except for the TSS turbulence model, all other models are unable to predict the aerodynamic coefficients corresponding to AOA higher than 10 degrees. Practical implications The presented results in this paper include lift, drag and pitching moment coefficients in various AOA and also the distribution of aerodynamic coefficients along the span. Originality/value The presented results include lift, drag and pitching moment coefficients in various AOA and also aerodynamic coefficients distribution along the span.

2018 ◽  
Vol 15 (1) ◽  
pp. 173-180 ◽  
Author(s):  
Yasser M. Ahmed ◽  
A.H. Elbatran

Purpose This paper aims to investigate numerically the turbulent flow characteristics over a backward facing step. Different turbulence models with hybrid computational grid have been used to study the detached flow structure in this case. Comparison between the numerical results and the available experiment data is carried out in the present study. The results of the different turbulence models were in a good agreement with the experimental results. The numerical results also concluded that the k-kl-ω turbulence model gave favorable results compared with the experiment. Design/methodology/approach It is very important to study the flow characteristics of detached flows. Therefore, the current study investigates numerically the flow characteristics in backward facing step by using two-, three- and seven-equation turbulence models in the finite volume code ANSYS Fluent. In addition, hybrid grid has been used to improve the capability of the unstructured mesh elements for predicting the flow separation in this case. Comparison between the different turbulence models and the available experimental data was done to find the most suitable turbulence model for simulating such cases of detached flows. Findings The present numerical simulations with the different turbulence models predicted efficiently the flow characteristics over the backward facing step. The transition k-kl-ω gave the best acceptable results compared with experimental data. This is a good concluded remark in the fields of fluid mechanics and hydrodynamics because the phenomenon of flow separation is not easy to be predicted numerically and can affect greatly on the predicted drag of moving bodies in many engineering applications. Originality/value The CFD results of using different turbulence models have been validated with the experimental work, and the results of k-kl-ω proven acceptable with flow characteristics. The results of the current study conclude that the use of k-kl-ω turbulence model will contribute towards a more efficient utilization in the fields of fluid mechanics and hydrodynamics.


Author(s):  
Anders Hedenström

Animal flight represents a great challenge and model for biomimetic design efforts. Powered flight at low speeds requires not only appropriate lifting surfaces (wings) and actuator (engine), but also an advanced sensory control system to allow maneuvering in confined spaces, and take-off and landing. Millions of years of evolutionary tinkering has resulted in modern birds and bats, which are achieve controlled maneuvering flight as well as hovering and cruising flight with trans-continental non-stop migratory flights enduring several days in some bird species. Unsteady aerodynamic mechanisms allows for hovering and slow flight in insects, birds and bats, such as for example the delayed stall with a leading edge vortex used to enhance lift at slows speeds. By studying animal flight with the aim of mimicking key adaptations allowing flight as found in animals, engineers will be able to design micro air vehicles of similar capacities.


2021 ◽  
Vol 910 ◽  
Author(s):  
Yoshikazu Hirato ◽  
Minao Shen ◽  
Ashok Gopalarathnam ◽  
Jack R. Edwards

Abstract


2014 ◽  
Vol 743 ◽  
pp. 249-261 ◽  
Author(s):  
Craig J. Wojcik ◽  
James H. J. Buchholz

AbstractVorticity transport is analysed within the leading-edge vortex generated on a rectangular flat plate of aspect ratio 4 undergoing a starting rotation motion in a quiescent fluid. Two analyses are conducted on the inboard half of the blade to better understand the vorticity transport mechanisms responsible for maintaining the quasi-equilibrium state of the leading-edge vortex. An initial global analysis between the $25$ and $50\, \%$ spanwise positions suggests that, although spanwise velocity is significant, spanwise convection of vorticity is insufficient to balance the flux of vorticity from the leading-edge shear layer. Subsequent detailed analyses of vorticity transport in planar control volumes at the $25$ and $50\, \%$ spanwise positions verify this conclusion and demonstrate that vorticity annihilation due to interaction between the leading-edge vortex and the opposite-sign layer on the plate surface is an important, often dominant, mechanism for regulation of leading-edge-vortex circulation. Thus, it provides an important condition for maintenance of an attached leading-edge vortex on the inboard portion of the blade.


1999 ◽  
Vol 121 (3) ◽  
pp. 558-568 ◽  
Author(s):  
M. B. Kang ◽  
A. Kohli ◽  
K. A. Thole

The leading edge region of a first-stage stator vane experiences high heat transfer rates, especially near the endwall, making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Reex = 6 × 105 and 1.2 × 106). In addition, laser-Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for a plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution, and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at higher Reynolds numbers due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand, the mean velocity, turbulent kinetic energy, and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point, which moves closer to the stator vane at lower Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document