An improved sexual genetic algorithm for solving 0/1 multidimensional knapsack problem

2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Soukaina Laabadi ◽  
Mohamed Naimi ◽  
Hassan El Amri ◽  
Boujemâa Achchab

Purpose The purpose of this paper is to provide an improved genetic algorithm to solve 0/1 multidimensional knapsack problem (0/1 MKP), by proposing new selection and crossover operators that cooperate to explore the search space. Design/methodology/approach The authors first present a new sexual selection strategy that significantly improves the one proposed by (Varnamkhasti and Lee, 2012), while working in phenotype space. Then they propose two variants of the two-stage recombination operator of (Aghezzaf and Naimi, 2009), while they adapt the latter in the context of 0/1 MKP. The authors evaluate the efficiency of both proposed operators on a large set of 0/1 MKP benchmark instances. The obtained results are compared against that of conventional selection and crossover operators, in terms of solution quality and computing time. Findings The paper shows that the proposed selection respects the two major factors of any metaheuristic: exploration and exploitation aspects. Furthermore, the first variant of the two-stage recombination operator pushes the search space towards exploitation, while the second variant increases the genetic diversity. The paper then demonstrates that the improved genetic algorithm combining the two proposed operators is a competitive method for solving the 0/1 MKP. Practical implications Although only 0/1 MKP standard instances were tested in the empirical experiments in this paper, the improved genetic algorithm can be used as a powerful tool to solve many real-world applications of 0/1 MKP, as the latter models several industrial and investment issues. Moreover, the proposed selection and crossover operators can be incorporated into other bio-inspired algorithms to improve their performance. Furthermore, the two proposed operators can be adapted to solve other binary combinatorial optimization problems. Originality/value This research study provides an effective solution for a well-known non-deterministic polynomial-time (NP)-hard combinatorial optimization problem; that is 0/1 MKP, by tackling it with an improved genetic algorithm. The proposed evolutionary mechanism is based on two new genetic operators. The first proposed operator is a new and deeply different variant of the so-called sexual selection that has been rarely addressed in the literature. The second proposed operator is an adaptation of the two-stage recombination operator in the 0/1 MKP context. This adaptation results in two variants of the two-stage recombination operator that aim to improve the quality of encountered solutions, while taking advantage of the sexual selection criteria to prevent the classical issue of genetic algorithm that is premature convergence.

2002 ◽  
Vol 10 (1) ◽  
pp. 51-74 ◽  
Author(s):  
Peter Bruhn ◽  
Andreas Geyer-Schulz

In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling com-plementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.


Author(s):  
Bernhard Lienland ◽  
Li Zeng

The 0-1 multidimensional knapsack problem (MKP) is a well-known combinatorial optimization problem with several real-life applications, for example, in project selection. Genetic algorithms (GA) are effective heuristics for solving the 0-1 MKP. Multiple individual GAs with specific characteristics have been proposed in literature. However, so far, these approaches have only been partially compared in multiple studies with unequal conditions. Therefore, to identify the “best” genetic algorithm, this article reviews and compares 11 existing GAs. The authors' tests provide detailed information on the GAs themselves as well as their performance. The authors validated fitness values and required computation times in varying problem types and environments. Results demonstrate the superiority of one GA.


Kybernetes ◽  
2014 ◽  
Vol 43 (9/10) ◽  
pp. 1500-1511 ◽  
Author(s):  
John H Drake ◽  
Matthew Hyde ◽  
Khaled Ibrahim ◽  
Ender Ozcan

Purpose – Hyper-heuristics are a class of high-level search techniques which operate on a search space of heuristics rather than directly on a search space of solutions. The purpose of this paper is to investigate the suitability of using genetic programming as a hyper-heuristic methodology to generate constructive heuristics to solve the multidimensional 0-1 knapsack problem Design/methodology/approach – Early hyper-heuristics focused on selecting and applying a low-level heuristic at each stage of a search. Recent trends in hyper-heuristic research have led to a number of approaches being developed to automatically generate new heuristics from a set of heuristic components. A population of heuristics to rank knapsack items are trained on a subset of test problems and then applied to unseen instances. Findings – The results over a set of standard benchmarks show that genetic programming can be used to generate constructive heuristics which yield human-competitive results. Originality/value – In this work the authors show that genetic programming is suitable as a method to generate reusable constructive heuristics for the multidimensional 0-1 knapsack problem. This is classified as a hyper-heuristic approach as it operates on a search space of heuristics rather than a search space of solutions. To our knowledge, this is the first time in the literature a GP hyper-heuristic has been used to solve the multidimensional 0-1 knapsack problem. The results suggest that using GP to evolve ranking mechanisms merits further future research effort.


2017 ◽  
Vol 10 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Abdellah Rezoug ◽  
Mohamed Bader-El-Den ◽  
Dalila Boughaci

Sign in / Sign up

Export Citation Format

Share Document