Analysis of an extended two-lane lattice hydrodynamic model considering mixed traffic flow and self-stabilization effect

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ting Wang ◽  
Rongjun Cheng ◽  
Hongxia Ge

Purpose The purpose of this paper is to explore the impact of the mixed traffic flow, self-stabilization effect and the lane changing behavior on traffic flow stability. Design/methodology/approach An extended two-lane lattice hydrodynamic model considering mixed traffic flow and self-stabilization effect is proposed in this paper. Through linear analysis, the stability conditions of the extended model are derived. Then, the nonlinear analysis of the model is carried out by using the perturbation theory, the modified Kortweg–de Vries equation of the density of the blocking area is derived and the kink–antikink solution about the density is obtained. Furthermore, the results of theoretical analysis are verified by numerical simulation. Findings The results of numerical simulation show that the increase of the proportion of vehicles with larger maximum speed or larger safe headway in the mix flow are not conducive to the stability of traffic flow, while the self-stabilization effect and lane changing behavior is positive to the alleviation of traffic congestion. Research limitations/implications This paper does not take into account the factors such as curve and slope in the actual road environment, which will have more or less influence on the stability of traffic flow, so there is still a certain gap with the real traffic environment. Originality/value The existing two-lane lattice hydrodynamic models are rarely discussed in the case of mixed traffic flow. The improved model proposed in this paper can better reflect the actual traffic, which can also provide a theoretical reference for the actual traffic governance.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qingying Wang ◽  
Rongjun Cheng ◽  
Hongxia Ge

Purpose The purpose of this paper is to explore how curved road and lane-changing rates affect the stability of traffic flow. Design/methodology/approach An extended two-lane lattice hydrodynamic model on a curved road accounting for the empirical lane-changing rate is presented. The linear analysis of the new model is discussed, the stability condition and the neutral stability condition are obtained. Also, the mKdV equation and its solution are proposed through nonlinear analysis, which discusses the stability of the extended model in the unstable region. Furthermore, the results of theoretical analysis are verified by numerical simulation. Findings The empirical lane-changing rate on a curved road is an important factor, which can alleviate traffic congestion. Research limitations/implications This paper does not take into account the factors such as slope, the drivers’ characters and so on in the actual traffic, which will have more or less influence on the stability of traffic flow, so there is still a certain gap with the real traffic environment. Originality/value The curved road and empirical lane-changing rate are researched simultaneously in a two-lane lattice hydrodynamic models in this paper. The improved model can better reflect the actual traffic, which can also provide a theoretical reference for the actual traffic governance.


2008 ◽  
Vol 19 (11) ◽  
pp. 1705-1715 ◽  
Author(s):  
WEI-WEI ZHANG ◽  
RUI JIANG ◽  
YAO-MING YUAN ◽  
QING-SONG WU

This paper investigates traffic dynamics of two-lane mixed traffic flow system composed of cars and buses, which are characterized by different lengths and different maximum velocities. Four lane changing regulations are studied, which reveals effect of lane changing ban, symmetric and asymmetric lane changing rules on traffic flow characteristics (flow rate, carry capability, lane changing frequency, and lane usage). We expect that our results could be useful for traffic management.


2021 ◽  
pp. 2150340
Author(s):  
Huimin Liu ◽  
Rongjun Cheng ◽  
Hongxia Ge

In the actual traffic, there are not only cars, but also buses, trucks and other vehicles. These vehicles with different maximum speeds or security headway or both are interspersed irregularly to form a heterogeneous traffic flow. In addition, most of the maximum speed of modern cars is hardly affected by gradients due to the fact that the car engine and brakes are rarely operated at their max while the maximum speed of trucks is affected. Considering that the performance of various types of vehicles is multifarious and the vehicles sometimes drive on the road with slopes, a novel two-lane lattice hydrodynamic model on a gradient road considering heterogeneous traffic flow is proposed in this paper. In order to verify the rationality of the model, the linear stability analysis is carried out first, that is, the linear stability conditions are derived from the linear stability theory and the stability curve is drawn accordingly. The results of the above analysis prove that the three factors studied in this paper, namely, time lane change, slope and mixing of different types of vehicles, all have a significant influence on the stability of traffic flow. The modified Korteweg–de Vries (mKdV) equation is deduced by the nonlinear analysis method, which can describe the propagation characteristics of the traffic density waves near the critical point. Last but not least, the numerical simulation for new model is conducted and the numerical simulation results obtained are in good agreement with theoretical ones. In summary, increasing the lane changing rate or the slope on the uphill can improve the traffic flow stability. What is more, increasing the slope can lower the traffic flow stability on the downhill. Finally, in the heterogeneous traffic flow of different types of vehicles, the vehicles with larger security headway will make traffic flow difficult to stabilize, as do the vehicles with larger maximum speed.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Zun-dong Zhang ◽  
Yan-fang Yang ◽  
Wenjiao Qi ◽  
Abderrahim Chariete ◽  
Xing-xiang Lin

According to different driving behavioral characteristics of bus drivers, a cellular automata traffic model considering the bus lane changing behavior with scheduling parameters is proposed in this paper. Traffic bottleneck problems caused by bus stops are simulated in multiple lanes roads with no-bay bus stations. With the mixed traffic flow composed of different bus arrival rate, flow-density graph, density distribution graph, and temporal-spatial graph are presented. Furthermore, the mixed traffic flow characteristics are analyzed. Numerical experiment results show that the proposed model can generate a variety of complicated realistic phenomena in the traffic system with bus stops and provide theoretical basis for better using of traffic flow model.


2013 ◽  
Vol 838-841 ◽  
pp. 2117-2120
Author(s):  
Xiao Fang Yang ◽  
Jian Rong Wang ◽  
Xin Zhu Wang

This paper presents a new lane-changing model of multi-lane mixed traffic flow. The influences of heavy vehicles on lane-changing are analyzed. An improved accumulated speed benefit model is proposed in which drivers generate lane-changing intentions based on accumulated speed benefit of preceding vehicle in target lane over the preceding vehicle in current lane, not just relative to the speed and desired speed of subject vehicle. Drivers may accelerate or decelerate during lane-changing due to different traffic conditions. Simulations show that with the increase in the proportion of heavy vehicles, lane changing frequency first increases and then decreases. The model is validated with empirical data.


Sign in / Sign up

Export Citation Format

Share Document