A new two-lane lattice hydrodynamic model on a curved road accounting for the empirical lane-changing rate

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qingying Wang ◽  
Rongjun Cheng ◽  
Hongxia Ge

Purpose The purpose of this paper is to explore how curved road and lane-changing rates affect the stability of traffic flow. Design/methodology/approach An extended two-lane lattice hydrodynamic model on a curved road accounting for the empirical lane-changing rate is presented. The linear analysis of the new model is discussed, the stability condition and the neutral stability condition are obtained. Also, the mKdV equation and its solution are proposed through nonlinear analysis, which discusses the stability of the extended model in the unstable region. Furthermore, the results of theoretical analysis are verified by numerical simulation. Findings The empirical lane-changing rate on a curved road is an important factor, which can alleviate traffic congestion. Research limitations/implications This paper does not take into account the factors such as slope, the drivers’ characters and so on in the actual traffic, which will have more or less influence on the stability of traffic flow, so there is still a certain gap with the real traffic environment. Originality/value The curved road and empirical lane-changing rate are researched simultaneously in a two-lane lattice hydrodynamic models in this paper. The improved model can better reflect the actual traffic, which can also provide a theoretical reference for the actual traffic governance.

2018 ◽  
Vol 29 (09) ◽  
pp. 1850083 ◽  
Author(s):  
Guanghan Peng ◽  
Shuhong Yang ◽  
Hongzhuan Zhao ◽  
Li Qing

In this paper, the flux difference memory integral (FDMI) effect is introduced into the lattice hydrodynamic model for a two-lane freeway. The FDMI effect plays an important role on the linear stability condition, from theoretic analysis, in a two-lane system. The FDMI effect including the intensity reaction coefficient and the integral historical time are investigated on two lanes via simulation. From numerical simulation, both lane changing rate and FDMI effect strengthening the stability of traffic flow on two lanes is determined.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ting Wang ◽  
Rongjun Cheng ◽  
Hongxia Ge

Purpose The purpose of this paper is to explore the impact of the mixed traffic flow, self-stabilization effect and the lane changing behavior on traffic flow stability. Design/methodology/approach An extended two-lane lattice hydrodynamic model considering mixed traffic flow and self-stabilization effect is proposed in this paper. Through linear analysis, the stability conditions of the extended model are derived. Then, the nonlinear analysis of the model is carried out by using the perturbation theory, the modified Kortweg–de Vries equation of the density of the blocking area is derived and the kink–antikink solution about the density is obtained. Furthermore, the results of theoretical analysis are verified by numerical simulation. Findings The results of numerical simulation show that the increase of the proportion of vehicles with larger maximum speed or larger safe headway in the mix flow are not conducive to the stability of traffic flow, while the self-stabilization effect and lane changing behavior is positive to the alleviation of traffic congestion. Research limitations/implications This paper does not take into account the factors such as curve and slope in the actual road environment, which will have more or less influence on the stability of traffic flow, so there is still a certain gap with the real traffic environment. Originality/value The existing two-lane lattice hydrodynamic models are rarely discussed in the case of mixed traffic flow. The improved model proposed in this paper can better reflect the actual traffic, which can also provide a theoretical reference for the actual traffic governance.


2016 ◽  
Vol 85 (3) ◽  
pp. 1423-1443 ◽  
Author(s):  
Jie Zhou ◽  
Zhong-Ke Shi ◽  
Chao-Ping Wang

2020 ◽  
Vol 31 (02) ◽  
pp. 2050031 ◽  
Author(s):  
Cong Zhai ◽  
Weitiao Wu

Understanding the pedestrian behavior contributes to traffic simulation and facility design/redesign. In practice, the interactions between individual pedestrians can lead to virtual honk effect, such as urging surrounding pedestrians to walk faster in a crowded environment. To better reflect the reality, this paper proposes a new lattice hydrodynamic model for bidirectional pedestrian flow with consideration of pedestrians’ honk effect. To this end, the concept of critical density is introduced to define the occurrence of pedestrians’ honk event. In the linear stability analysis, the stability condition of the new bidirectional pedestrian flow model is given based on the perturbation method, and the neutral stability curve is also obtained. Based on this, it is found that the honk effect has a significant impact on the stability of pedestrian flow. In the nonlinear stability analysis, the modified Korteweg–de Vries (mKdV) equation of the model is obtained based on the reductive perturbation method. By solving the mKdV equation, the kink-antikink soliton wave is obtained to describe the propagation mechanism and rules of pedestrian congestion near the neutral stability curve. The simulation example shows that the pedestrians’ honk effect can mitigate the pedestrians crowding efficiently and improve the stability of the bidirectional pedestrian flow.


2021 ◽  
pp. 2150340
Author(s):  
Huimin Liu ◽  
Rongjun Cheng ◽  
Hongxia Ge

In the actual traffic, there are not only cars, but also buses, trucks and other vehicles. These vehicles with different maximum speeds or security headway or both are interspersed irregularly to form a heterogeneous traffic flow. In addition, most of the maximum speed of modern cars is hardly affected by gradients due to the fact that the car engine and brakes are rarely operated at their max while the maximum speed of trucks is affected. Considering that the performance of various types of vehicles is multifarious and the vehicles sometimes drive on the road with slopes, a novel two-lane lattice hydrodynamic model on a gradient road considering heterogeneous traffic flow is proposed in this paper. In order to verify the rationality of the model, the linear stability analysis is carried out first, that is, the linear stability conditions are derived from the linear stability theory and the stability curve is drawn accordingly. The results of the above analysis prove that the three factors studied in this paper, namely, time lane change, slope and mixing of different types of vehicles, all have a significant influence on the stability of traffic flow. The modified Korteweg–de Vries (mKdV) equation is deduced by the nonlinear analysis method, which can describe the propagation characteristics of the traffic density waves near the critical point. Last but not least, the numerical simulation for new model is conducted and the numerical simulation results obtained are in good agreement with theoretical ones. In summary, increasing the lane changing rate or the slope on the uphill can improve the traffic flow stability. What is more, increasing the slope can lower the traffic flow stability on the downhill. Finally, in the heterogeneous traffic flow of different types of vehicles, the vehicles with larger security headway will make traffic flow difficult to stabilize, as do the vehicles with larger maximum speed.


2020 ◽  
Vol 37 (8) ◽  
pp. 2939-2955 ◽  
Author(s):  
Xinyue Qi ◽  
Rongjun Cheng ◽  
Hongxia Ge

Purpose This study aims to consider the influence of density difference integral and relative flow difference on traffic flow, a novel two-lane lattice hydrodynamic model is proposed. The stability criterion for the new model is obtained through the linear analysis method. Design/methodology/approach The modified Korteweg de Vries (KdV) (mKdV) equation is derived to describe the characteristic of traffic jams near the critical point. Numerical simulations are carried out to explore how density difference integral and relative flow difference influence traffic stability. Numerical and analytical results demonstrate that traffic congestions can be effectively relieved considering density difference integral and relative flow difference. Findings The traffic congestions can be effectively relieved considering density difference integral and relative flow difference. Originality/value Novel two-lane lattice hydrodynamic model is presented considering density difference integral and relative flow difference. Applying the linear stability theory, the new model’s linear stability is obtained. Through nonlinear analysis, the mKdV equation is derived. Numerical results demonstrate that the traffic flow stability can be efficiently improved by the effect of density difference integral and relative flow difference.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2464
Author(s):  
Huimin Liu ◽  
Rongjun Cheng ◽  
Tingliu Xu

In actual driving, the driver can estimate the traffic condition ahead at the next moment in terms of the current traffic information, which describes the driver’s predictive effect. Due to this factor, a novel two-dimensional lattice hydrodynamic model considering a driver’s predictive effect is proposed in this paper. The stability condition of the novel model is obtained by performing the linear stability analysis method, and the phase diagram between the driver’s sensitivity coefficient and traffic density is drawn. The nonlinear analysis of the model is conducted and the kink-antikink of modified Korteweg-de Vries (mKdV) equation is derived, which describes the propagation characteristics of the traffic density flow waves near the critical point. The numerical simulation is executed to explore how the driver’s predictive effect affects the traffic flow stability. Numerical results coincide well with theoretical analysis results, which indicates that the predictive effect of drivers can effectively avoid traffic congestion and the fraction of eastbound cars can also improve the stability of traffic flow to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document