Fourth kind Chebyshev Wavelet Method for the solution of multi-term variable order fractional differential equations

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arzu Turan Dincel ◽  
Sadiye Nergis Tural Polat

PurposeMulti-term variable-order fractional differential equations (VO-FDEs) are powerful tools in accurate modeling of transient-regime real-life problems such as diffusion phenomena and nonlinear viscoelasticity. In this paper the Chebyshev polynomials of the fourth kind is employed to obtain a numerical solution for those multi-term VO-FDEs.Design/methodology/approachTo this end, operational matrices for the approximation of the VO-FDEs are obtained using the Fourth kind Chebyshev Wavelets (FKCW). Thus, the VO-FDE is condensed into an algebraic equation system. The solution of the system of those equations yields a coefficient vector, the coefficient vector in turn yields the approximate solution.FindingsSeveral examples that we present at the end of the paper emphasize the efficacy and preciseness of the proposed method.Originality/valueThe value of the paper stems from the exploitation of FKCWs for the numerical solution of multi-term VO-FDEs. The method produces accurate results even for relatively small collocation points. What is more, FKCW method provides a compact mapping between multi-term VO-FDEs and a system of algebraic equations given in vector-matrix form.

Author(s):  
A. M. Nagy ◽  
N. H. Sweilam ◽  
Adel A. El-Sayed

The multiterm fractional variable-order differential equation has a massive application in physics and engineering problems. Therefore, a numerical method is presented to solve a class of variable order fractional differential equations (FDEs) based on an operational matrix of shifted Chebyshev polynomials of the fourth kind. Utilizing the constructed operational matrix, the fundamental problem is reduced to an algebraic system of equations which can be solved numerically. The error estimate of the proposed method is studied. Finally, the accuracy, applicability, and validity of the suggested method are illustrated through several examples.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Umer Saeed

PurposeThe purpose of the present work is to propose a wavelet method for the numerical solutions of Caputo–Hadamard fractional differential equations on any arbitrary interval.Design/methodology/approachThe author has modified the CAS wavelets (mCAS) and utilized it for the solution of Caputo–Hadamard fractional linear/nonlinear initial and boundary value problems. The author has derived and constructed the new operational matrices for the mCAS wavelets. Furthermore, The author has also proposed a method which is the combination of mCAS wavelets and quasilinearization technique for the solution of nonlinear Caputo–Hadamard fractional differential equations.FindingsThe author has proved the orthonormality of the mCAS wavelets. The author has constructed the mCAS wavelets matrix, mCAS wavelets operational matrix of Hadamard fractional integration of arbitrary order and mCAS wavelets operational matrix of Hadamard fractional integration for Caputo–Hadamard fractional boundary value problems. These operational matrices are used to make the calculations fast. Furthermore, the author works out on the error analysis for the method. The author presented the procedure of implementation for both Caputo–Hadamard fractional initial and boundary value problems. Numerical simulation is provided to illustrate the reliability and accuracy of the method.Originality/valueMany scientist, physician and engineers can take the benefit of the presented method for the simulation of their linear/nonlinear Caputo–Hadamard fractional differential models. To the best of the author’s knowledge, the present work has never been proposed and implemented for linear/nonlinear Caputo–Hadamard fractional differential equations.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zain ul Abdeen ◽  
Mujeeb ur Rehman

PurposeThe purpose of this paper is to obtain a numerical scheme for finding numerical solutions of linear and nonlinear Hadamard-type fractional differential equations.Design/methodology/approachThe aim of this paper is to develop a numerical scheme for numerical solutions of Hadamard-type fractional differential equations. The classical Haar wavelets are modified to align them with Hadamard-type operators. Operational matrices are derived and used to convert differential equations to systems of algebraic equations.FindingsThe upper bound for error is estimated. With the help of quasilinearization, nonlinear problems are converted to sequences of linear problems and operational matrices for modified Haar wavelets are used to get their numerical solution. Several numerical examples are presented to demonstrate the applicability and validity of the proposed method.Originality/valueThe numerical method is purposed for solving Hadamard-type fractional differential equations.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040046
Author(s):  
ADNAN KHAN ◽  
KAMAL SHAH ◽  
MUHAMMAD ARFAN ◽  
THABET ABDELJAWAD ◽  
FAHD JARAD

In this research work, we discuss an approximation techniques for boundary value problems (BVPs) of differential equations having fractional order (FODE). We avoid the method from discretization of data by applying polynomials of Laguerre and developed some matrices of operational types for the obtained numerical solution. By applying the operational matrices, the given problem is converted to some algebraic equation which on evaluation gives the required numerical results. These equations are of Sylvester types and can be solved by using matlab. We present some testing examples to ensure the correctness of the considered techniques.


Sign in / Sign up

Export Citation Format

Share Document