Effects of MHD mixed convection with non-uniform heat source/sink and cross-diffusion over exponentially stretching sheet

2018 ◽  
Vol 28 (6) ◽  
pp. 1238-1255 ◽  
Author(s):  
Prabhugouda Mallanagouda Patil ◽  
Nafisabanu Kumbarwadi ◽  
Shashikant A.

Purpose The purpose of this paper is to investigate the magnetohydrodynamics mixed convection flow over an exponentially stretching surface in the presence of non-uniform heat source/sink and cross-diffusion. Adequate non-similar transformations are used to transform governing mixed convection boundary layer equations to dimensionless form. Design/methodology/approach These dimensionless partial differential equations are solved by using implicit finite difference scheme in conjunction with Quasi-linearization technique. Findings The effects of admissible parameters such as Eckert number (Ec), the ratio of buoyancy forces parameter (N), non-uniform heat source/sink, Soret and Dufour numbers on flow, temperature and concentration distributions are discussed and analysed through graphs. In addition, the results for skin friction coefficient, Sherwood number and Nusselt number are presented and discussed graphically. Originality/value In literature, no research work has been found in similar to this research paper.

Author(s):  
T. Hayat ◽  
M. Waqas ◽  
Sabir Ali Shehzad ◽  
A. Alsaedi

Purpose – The purpose of this paper is to examine the effects of variable thermal conductivity in mixed convection flow of viscoelastic nanofluid due to a stretching cylinder with heat source/sink. Design/methodology/approach – The authors have computed the existence of the solution for Walter’s B and second grade fluids corresponding to Pr=0.5 and Pr=1.5. Skin-friction coefficient, local Nusselt and Sherwood numbers are computed numerically for different values of emerging parameters. Findings – A comparative study with the existing solutions in a limiting sense is made and analyzed. The authors found that the dimensionless velocity filed and momentum boundary layer thickness are increased when the values of viscoelastic parameter increase. The present non-Newtonian fluid flow reduces to the viscous flow in the absence of viscoelastic parameter. The larger values of viscoelastic parameter corresponds to the higher values of local Nusselt and Sherwood numbers. Originality/value – No such analysis exists in the literature yet.


2017 ◽  
Vol 11 ◽  
pp. 182-190
Author(s):  
Gauri Shenkar Seth ◽  
Rohit Sharma ◽  
B. Kumbhakar ◽  
R. Tripathi

An investigation is carried out for the steady, two dimensional stagnation point flow of a viscous, incompressible, electrically conducting, optically thick heat radiating fluid taking viscous dissipation into account over an exponentially stretching non-isothermal sheet with exponentially moving free-stream in the presence of uniform transverse magnetic field and non-uniform heat source/sink. The governing boundary layer equations are transformed into highly nonlinear ordinary differential equations using suitable similarity transform. Resulting boundary value problem is solved numerically with the help of 4th-order Runge-Kutta Gill method along with shooting technique. Effects of various pertinent flow parameters on the velocity, temperature field, skin friction and Nusselt number are described through figures and tables. Also, the present numerical results are compared with the earlier published results for some reduced case and a good agreement has been found among those results.


2019 ◽  
Vol 15 (2) ◽  
pp. 452-472 ◽  
Author(s):  
Jayarami Reddy Konda ◽  
Madhusudhana Reddy N.P. ◽  
Ramakrishna Konijeti ◽  
Abhishek Dasore

PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.Design/methodology/approachThe governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.FindingsThe working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.Originality/valueA good agreement of the present results has been observed by comparing with the existing literature results.


Sign in / Sign up

Export Citation Format

Share Document