scholarly journals Effects of Non-Darcy Porous Medium on MHD Mixed Convection With Cross Diffusion and Non Uniform Heat Source/Sink over Exponentially Stretching Sheet

Author(s):  
Prabhugouda Patil
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


2018 ◽  
Vol 28 (6) ◽  
pp. 1238-1255 ◽  
Author(s):  
Prabhugouda Mallanagouda Patil ◽  
Nafisabanu Kumbarwadi ◽  
Shashikant A.

Purpose The purpose of this paper is to investigate the magnetohydrodynamics mixed convection flow over an exponentially stretching surface in the presence of non-uniform heat source/sink and cross-diffusion. Adequate non-similar transformations are used to transform governing mixed convection boundary layer equations to dimensionless form. Design/methodology/approach These dimensionless partial differential equations are solved by using implicit finite difference scheme in conjunction with Quasi-linearization technique. Findings The effects of admissible parameters such as Eckert number (Ec), the ratio of buoyancy forces parameter (N), non-uniform heat source/sink, Soret and Dufour numbers on flow, temperature and concentration distributions are discussed and analysed through graphs. In addition, the results for skin friction coefficient, Sherwood number and Nusselt number are presented and discussed graphically. Originality/value In literature, no research work has been found in similar to this research paper.


Sign in / Sign up

Export Citation Format

Share Document