Unsteady natural convection in a partially porous cavity having a heat-generating source using local thermal non-equilibrium model

2019 ◽  
Vol 29 (6) ◽  
pp. 1902-1919 ◽  
Author(s):  
Marina S. Astanina ◽  
Mikhail Sheremet ◽  
C. Jawali Umavathi

Purpose The purpose of this study is a numerical analysis of transient natural convection in a square partially porous cavity with a heat-generating and heat-conducting element using the local thermal non-equilibrium model under the effect of cooling from the vertical walls. It should be noted that this research deals with a development of passive cooling system for the electronic devices. Design/methodology/approach The domain of interest is a square cavity with a porous layer and a heat-generating element. The vertical walls of the cavity are kept at constant cooling temperature, while the horizontal walls are adiabatic. The heat-generating solid element is located on the bottom wall. A porous layer is placed under the clear fluid layer. The governing equations, formulated in dimensionless stream function, vorticity and temperature variables with corresponding initial and boundary conditions, are solved using implicit finite difference schemes of the second order accuracy. The governing parameters are the Darcy number, viscosity variation parameter, porous layer height and dimensionless time. The effects of varying these parameters on the average total Nusselt number along the heat source surface, the average temperature of the heater, the fluid flow rate inside the cavity and on the streamlines and isotherms are analyzed. Findings The results show that in the case of local thermal non-equilibrium the total average Nusselt number is an increasing function of the interphase heat transfer coefficient and the porous layer thickness, while the average heat source temperature decreases with the Darcy number and viscosity variation parameter. Originality/value An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyze unsteady natural convection within a partially porous cavity using the local thermal non-equilibrium model in the presence of a local heat-generating solid element. The results would benefit scientists and engineers to become familiar with the analysis of convective heat transfer in enclosures with local heat-generating heaters and porous layers, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.

Author(s):  
M.A. Mansour ◽  
Sameh Elsayed Ahmed ◽  
Ali J. Chamkha

Purpose This paper aims to investigate the entropy generation due to magnetohydrodynamic natural convection flow and heat transfer in a porous enclosure filled with Cu-water nanofluid in the presence of viscous dissipation effect. The left and right walls of the cavity are thermally insulated. There are heated and cold parts, and these are placed on the bottom and top wall, respectively, whereas the remaining parts are thermally insulated. Design/methodology/approach The finite volume method is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published woks is presented and is found to be in an excellent agreement. Findings The minimization of entropy generation and local heat transfer according to different values of the governing parameters are presented in details. It is found that the presence of magnetic field has negative effects on the local entropy generation because of heat transfer and the local total entropy generation. Also, the increase in the heated part length leads to a decrease in the local Nusselt number. Originality/value This problem is original, as it has not been considered previously.


Author(s):  
Mikhail A. Sheremet ◽  
Ioan Pop ◽  
A. Cihat Baytas

Purpose This study aims to numerically analyze natural convection of alumina-water nanofluid in a differentially-heated square cavity partially filled with a heat-generating porous medium. A single-phase nanofluid model with experimental correlations for the nanofluid viscosity and thermal conductivity has been considered for the description of the nanoparticles transport effect in the present study. Local thermal non-equilibrium approach for the porous layer with the Brinkman-extended Darcy model has been used. Design/methodology/approach Dimensionless governing equations formulated using stream function, vorticity and temperature have been solved by the finite difference method. The effects of the Rayleigh number, Ostrogradsky number, Nield number and nanoparticles volume fraction on nanofluid flow, heat and mass transfer have been analyzed. Findings It has been revealed that the dimensionless heat transfer coefficient at the fluid/solid matrix interface can be a very good control parameter for the convective flow and heat transfer intensity. The present results are original and new for the study of non-equilibrium natural convection in a differentially-heated nanofluid cavity partially filled with a porous medium. Originality/value The results of this paper are new and original with many practical applications of nanofluids in the modern industry.


2018 ◽  
Vol 28 (9) ◽  
pp. 2111-2131 ◽  
Author(s):  
Mikhail A. Sheremet ◽  
Marina S. Astanina ◽  
Ioan Pop

Purpose The purpose of this paper is a numerical analysis of natural convection in a square porous cavity filled with a water-based magnetic fluid of geothermal viscosity under the effect of inclined uniform magnetic field. Design/methodology/approach The domain of interest includes the square porous cavity filled with a water-based magnetic fluid (W40). Horizontal walls are supposed to be adiabatic, while right vertical wall is kept at constant low temperature and left vertical wall is kept at constant high temperature. An inclined uniform magnetic field affects the fluid flow and heat transfer inside the cavity. The viscosity of the working fluid is proportional to the linearly decreasing function of depth (vertical coordinate) and inversely proportional to the linear function of temperature. It is assumed in the analysis that the flow is laminar. The fluid is Newtonian and the Boussinesq approximation is valid. The governing equations have been discretized using the finite difference method with the uniform grid. Simulations have been carried out for different values of the Rayleigh number, Hartmann number, Darcy number, magnetic field inclination angle and viscosity variation parameters. Findings It has been revealed that an increase in the viscosity parameters leads to the heat transfer enhancement and convective flow intensification. At the same time, this intensification is more essential for high values of the Rayleigh number. Originality/value The originality of this work is to analyze MHD natural convection in a square porous cavity filled with a water-based magnetic fluid of geothermal viscosity. The results would benefit scientists and engineers to become familiar with the analysis of convective heat and mass transfer in nanofluids, and the way to predict the properties of nanofluid convective flow in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.


Sign in / Sign up

Export Citation Format

Share Document