Exact and approximate analytic solutions of the thin film flow of fourth-grade fluids by the modified Adomian decomposition method

2016 ◽  
Vol 26 (8) ◽  
pp. 2432-2440 ◽  
Author(s):  
Lazhar Bougoffa ◽  
Jun-Sheng Duan ◽  
Randolph Rach

Purpose The purpose of this paper is to first deduce a new form of the exact analytic solution of the well-known nonlinear second-order differential equation subject to a set of mixed nonlinear Robin and Neumann boundary conditions that model the thin film flows of fourth-grade fluids, and second to compare the approximate analytic solutions by the Adomian decomposition method (ADM) with the new exact analytic solution to validate its accuracy for parametric simulations of the thin film fluid flows, even for more complex models of non-Newtonian fluids in industrial applications. Design/methodology/approach The approach to calculating a new form of the exact analytic solution of thin film fluid flows rests upon a sequence of transformations including the modification of the classic technique due to Scipione del Ferro and Niccolò Fontana Tartaglia. Next the authors establish a lemma that justifies the new expression of the exact analytic solution for thin film fluid flows of fourth-grade fluids. Second, the authors apply a modification of the systematic ADM to quickly and easily calculate the sequence of analytic approximate solutions for this strongly nonlinear model of thin film flow of fourth-grade fluids. The ADM has been previously demonstrated to be eminently practical with widespread applicability to frontier problems arising in scientific and engineering applications. Herein, the authors seek to establish the relative merits of the ADM in the context of the thin film flows of fourth-grade fluids. Findings The ADM is shown to closely agree with the new expression of the exact analytic solution. The authors have calculated the error remainder functions and the maximal error remainder parameters in the error analysis to corroborate the solutions. The error analysis demonstrates the rapid rate of convergence and that we can approximate the exact solution as closely as we please; furthermore the rate of convergence is shown to be approximately exponential, and thus only a low-stage approximation will be adequate for engineering simulations as previously documented in the literature. Originality/value This paper presents an accurate work for solving thin film flows of fourth-grade fluids. The authors have compared the approximate analytic solutions by the ADM with the new expression of the exact analytic solution for this strongly nonlinear model. The authors commend this technique for more complex thin film fluid flow models.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ming-Xian Lin ◽  
Chia-Hsiang Tseng ◽  
Chao Kuang Chen

PurposeThis paper presents the problems using Laplace Adomian decomposition method (LADM) for investigating the deformation and nonlinear behavior of the large deflection problems on Euler-Bernoulli beam.Design/methodology/approachThe governing equations will be converted to characteristic equations based on the LADM. The validity of the LADM has been confirmed by comparing the numerical results to different methods.FindingsThe results of the LADM are found to be better than the results of Adomian decomposition method (ADM), due to this method's rapid convergence and accuracy to obtain the solutions by using fewer iterative terms. LADM are presented for two examples for large deflection problems. The results obtained from example 1 shows the effects of the loading, horizontal parameters and moment parameters. Example 2 demonstrates the point loading and point angle influence on the Euler-Bernoulli beam.Originality/valueThe results of the LADM are found to be better than the results of ADM, due to this method's rapid convergence and accuracy to obtain the solutions by using fewer iterative terms.


2019 ◽  
Vol 15 (3) ◽  
pp. 673-684 ◽  
Author(s):  
Abiodun O. Ajibade ◽  
Jeremiah Jerry Gambo

Purpose The purpose of this paper is to analyze magnetohydrodynamics fully developed natural convection heat-generating/absorbing slip flow through a porous medium. Adomian decomposition method was applied to find the solutions to the problem. Design/methodology/approach In this study, Adomian decomposition method was used. Findings Results show that heat generation parameter enhanced the temperature and velocity of the fluid in the annulus. Moreover, slip effect parameter increases the velocity of the fluid. Originality/value Originality is in the application of Adomian decomposition method which allowed the slip at interface.


Author(s):  
Jianzhe Huang ◽  
Xingzhong Xiong

Purpose Due to the coupling between the direct-axis current, quadrature-axis current and rotor speed, the dynamic response could be strongly nonlinear. Besides, if the working condition is severe, the loading is no longer constant and multiple harmonics could be introduced. In this paper, the periodic motions for brushless motor will be solved, and accurate analytic solution will be obtained through the proposed method. The purpose of this study is to provide accurate analytic solution of periodic motions for brushless motor with fluctuated loading, which is a dynamic system with strong nonlinearity. Design/methodology/approach A newly developed semi-analytic algorithm called discrete implicit maps is used to give analytic solutions for both stable and unstable motions for such a motor. Findings The accurate analytic expressions for stable and unstable periodic motions have been obtained. For unstable motion, it can stay on the unstable orbit for many periods without any controller. Through bifurcation analysis, the parameter sensitivity has been obtained which can be a suggestion for design and operation. Originality/value This paper provides all possible analytical solutions for period-1 motion as well as the unstable motions in a range of system parameters. It offers a chance to control the unstable motion for such a motor.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rabha Ibrahim

PurposeIn this study, the authors introduce a solvability of special type of Langevin differential equations (LDEs) in virtue of geometric function theory. The analytic solutions of the LDEs are considered by utilizing the Caratheodory functions joining the subordination concept. A class of Caratheodory functions involving special functions gives the upper bound solution.Design/methodology/approachThe methodology is based on the geometric function theory.FindingsThe authors present a new analytic function for a class of complex LDEs.Originality/valueThe authors introduced a new class of complex differential equation, presented a new technique to indicate the analytic solution and used some special functions.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 575-586 ◽  
Author(s):  
Zeeshan Khan ◽  
Nasser Tairan ◽  
Wali Khan Mashwani ◽  
Haroon Ur Rasheed ◽  
Habib Shah ◽  
...  

Abstract The present paper related to thin film flows of two immiscible third grade fluids past a vertical moving belt with slip conditions in the presence of uniform magnetic field. Immiscible fluids we mean superposed fluids of different densities and viscosities. The basic governing equations of continuity, momentum and energy are incorporated. The modeled coupled equations are solved analytically by using Adomian Decomposition Method (ADM) along with Homotopy Analysis Method (HAM). The residual errors show the authentication of the present work. For comparison, numerical method (ND-Solve) is also applied and good agreement is found. The effects of model parameters on velocity, skin friction and temperature variation have been studied. At the end, the present study is also compared with single layer flow and revealed in close agreement with the result available in the literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Hamid Khan ◽  
S. Islam ◽  
Javed Ali ◽  
Inayat Ali Shah

We investigate squeezing flow between two large parallel plates by transforming the basic governing equations of the first grade fluid to an ordinary nonlinear differential equation using the stream functionsur(r,z,t)=(1/r)(∂ψ/∂z)anduz(r,z,t)=−(1/r)(∂ψ/∂r)and a transformationψ(r,z)=r2F(z). The velocity profiles are investigated through various analytical techniques like Adomian decomposition method, new iterative method, homotopy perturbation, optimal homotopy asymptotic method, and differential transform method.


2018 ◽  
Vol 28 (11) ◽  
pp. 2551-2566 ◽  
Author(s):  
Mustafa Turkyilmazoglu

PurposeThis paper aims to revisite the traditional Adomian decomposition method frequently used for the solution of highly nonlinear extended surface problems in order to understand the heat transfer enhancement phenomenon. It is modified to include a parameter adjusting and controlling the convergence of the resulting Adomian series.Design/methodology/approachIt is shown that without such a convergence control parameter, some of the published data in the literature concerning the problem are lacking accuracy or the worst is untrustful. With the proposed amendment over the classical Adomian decomposition method, it is easy to gain the range of parameters guaranteeing the convergence of the Adomian series.FindingsWith the presented improvement, the reliable behavior of the fin tip temperature and the fin efficiency of the most interested from practical perspective are easily predicted.Originality/valueThe relevant future studies involving the fin problems covering many physical nonlinear properties must be properly treated as guided in this paper, while the Adomian decomposition method is adopted for the solution procedure.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Asha Shivappa Kotnurkar ◽  
Deepa C. Katagi

PurposeThe current paper investigates the bioconvective third-grade nanofluid flow containing gyrotactic organisms with Copper-blood nanoparticles in permeable walls.Design/methodology/approachThe equations governing the flow are solved by adopting the Adomian decomposition method.FindingsThe results show that the biconvection Peclet number decreases the density of motile microorganisms, and the Rayleigh number also decreases the velocity profile.Practical implicationsThe present study can be applied to design the higher generation microsystems.Originality/valueTo the best of the authors’ knowledge, no such investigation has been carried out in the literature.


Sign in / Sign up

Export Citation Format

Share Document