A new (3 + 1)-dimensional Painlevé-integrable Sakovich equation: multiple soliton solutions
Purpose This paper aims to develop a new (3 + 1)-dimensional Painlev´e-integrable extended Sakovich equation. This paper formally derives multiple soliton solutions for this developed model. Design/methodology/approach This paper uses the simplified Hirota’s method for deriving multiple soliton solutions. Findings This paper finds that the developed (3 + 1)-dimensional Sakovich model exhibits complete integrability in analogy with the standard Sakovich equation. Research limitations/implications This paper addresses the integrability features of this model via using the Painlev´e analysis. This paper reports multiple soliton solutions for this equation by using the simplified Hirota’s method. Practical implications The study reports three non-linear terms added to the standard Sakovich equation. Social implications The study presents useful algorithms for constructing new integrable equations and for handling these equations. Originality/value The paper reports a new Painlev´e-integrable extended Sakovich equation, which belongs to second-order partial differential equations. The constructed model does not contain any dispersion term such as uxxx.