Adjusting patients streaming initiated by a wait time threshold in emergency department for minimizing opportunity cost

2017 ◽  
Vol 30 (6) ◽  
pp. 516-527 ◽  
Author(s):  
Byungjoon B.J. Kim ◽  
Theodore R. Delbridge ◽  
Dawn B. Kendrick

Purpose Two different systems for streaming patients were considered to improve efficiency measures such as waiting times (WTs) and length of stay (LOS) for a current emergency department (ED). A typical fast track area (FTA) and a fast track with a wait time threshold (FTW) were designed and compared effectiveness measures from the perspective of total opportunity cost of all patients’ WTs in the ED. The paper aims to discuss these issues. Design/methodology/approach This retrospective case study used computerized ED patient arrival to discharge time logs (between July 1, 2009 and June 30, 2010) to build computer simulation models for the FTA and fast track with wait time threshold systems. Various wait time thresholds were applied to stream different acuity-level patients. National average wait time for each acuity level was considered as a threshold to stream patients. Findings The fast track with a wait time threshold (FTW) showed a statistically significant shorter total wait time than the current system or a typical FTA system. The patient streaming management would improve the service quality of the ED as well as patients’ opportunity costs by reducing the total LOS in the ED. Research limitations/implications The results of this study were based on computer simulation models with some assumptions such as no transfer times between processes, an arrival distribution of patients, and no deviation of flow pattern. Practical implications When the streaming of patient flow can be managed based on the wait time before being seen by a physician, it is possible for patients to see a physician within a tolerable wait time, which would result in less crowded in the ED. Originality/value A new streaming scheme of patients’ flow may improve the performance of fast track system.

1996 ◽  
Vol 33 (9) ◽  
pp. 39-47 ◽  
Author(s):  
John W. Davies ◽  
Yanli Xu ◽  
David Butler

Significant problems in sewer systems are caused by gross solids, and there is a strong case for their inclusion in computer simulation models of sewer flow quality. The paper describes a project which considered methods of modelling the movement of gross solids in combined sewers. Laboratory studies provided information on advection and deposition of typical gross solids in part-full pipe flow. Theoretical considerations identified aspects of models for gross solids that should differ from those for dissolved and fine suspended pollutants. The proposed methods for gross solids were incorporated in a pilot model, and their effects on simple simulations were considered.


2014 ◽  
Vol 22 ◽  
pp. S57-S58
Author(s):  
W. Hui ◽  
D.A. Young ◽  
A.D. Rowan ◽  
T.E. Cawston ◽  
C.J. Proctor

1993 ◽  
Vol 8 (1) ◽  
pp. 24-27
Author(s):  
K. Leroy Dolph ◽  
Gary E. Dixon

Abstract Erroneous predictions of forest growth and yield may result when computer simulation models use extrapolated data in repeated or long-term projections or if the models are used outside the range of data on which they were built. Bounding functions that limit the predicted diameter and height growth of individual trees to maximum observed values were developed to constrain these erroneous predictions in a forest growth and yield simulator. Similar techniques could be useful for dealing with extrapolated data in other types of simulation models. West. J. Appl. For. 8(1):24-27.


Sign in / Sign up

Export Citation Format

Share Document