Delay-independent stabilization of nonlinear systems with multiple time-delays and its application in chaos synchronization of Rössler system

Author(s):  
Ping He ◽  
Tao Fan

Purpose – The purpose of this paper is with delay-independent stabilization of nonlinear systems with multiple time-delays and its application in chaos synchronization of Rössler system. Design/methodology/approach – Based on linear matrix inequality and algebra Riccati matrix equation, the stabilization result is derived to guarantee asymptotically stable and applicated in chaos synchronization of Rössler chaotic system with multiple time-delays. Findings – A controller is designed and added to the nonlinear system with multiple time-delays. The stability of the nonlinear system at its zero equilibrium point is guaranteed by applying the appropriate controller signal based on linear matrix inequality and algebra Riccati matrix equation scheme. Another effective controller is also designed for the global asymptotic synchronization on the Rössler system based on the structure of delay-independent stabilization of nonlinear systems with multiple time-delays. Numerical simulations are demonstrated to verify the effectiveness of the proposed controller scheme. Originality/value – The introduced approach is interesting for delay-independent stabilization of nonlinear systems with multiple time-delays and its application in chaos synchronization of Rössler system.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Lina Rong ◽  
Chengda Yu ◽  
Pengfei Guo ◽  
Hui Gao

The fault detection problem for a class of wireless networked control systems is investigated. A Bernoulli distributed parameter is introduced in modeling the system dynamics; moreover, multiple time delays arising in the communication are taken into account. The detection observer for tracking the system states is designed, which generates both the state errors and the output errors. By adopting the linear matrix inequality method, a sufficient condition for the stability of wireless networked control systems with stochastic uncertainties and multiple time delays is proposed, and the gain of the fault detection observer is obtained. Finally, an illustrated example is provided to show that the observer designed in this paper tracks the system states well when there is no fault in the systems; however, when fault happens, the observer residual signal rises rapidly and the fault can be quickly detected, which demonstrate the effectiveness of the theoretical results.


2003 ◽  
Vol 2003 (4) ◽  
pp. 137-152 ◽  
Author(s):  
D. Mehdi ◽  
E. K. Boukas

This paper deals with the class of uncertain systems with multiple time delays. The stability and stabilizability of this class of systems are considered. Their robustness are also studied when the norm-bounded uncertainties are considered. Linear matrix inequality (LMIs) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established to check if a system of this class is stable and/or is stabilizable. Some numerical examples are provided to show the usefulness of the proposed results.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Wuneng Zhou ◽  
Xueqing Yang ◽  
Jun Yang ◽  
Jun Zhou

The problem of stochastic synchronization of neutral-type neural networks with multidelays based onM-matrix is researched. Firstly, we designed a control law of stochastic synchronization of the neural-type and multiple time-delays neural network. Secondly, by making use of Lyapunov functional andM-matrix method, we obtained a criterion under which the drive and response neutral-type multiple time-delays neural networks with stochastic disturbance and Markovian switching are stochastic synchronization. The synchronization condition is expressed as linear matrix inequality which can be easily solved by MATLAB. Finally, we introduced a numerical example to illustrate the effectiveness of the method and result obtained in this paper.


Sign in / Sign up

Export Citation Format

Share Document