Shifted Rayleigh filter: a novel estimation filtering algorithm for pervasive underwater passive target tracking for computation in 3D by bearing and elevation measurements

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lakshmi M. Kavitha ◽  
Rao S. Koteswara ◽  
K. Subrahmanyam

Purpose Marine exploration is becoming an important element of pervasive computing underwater target tracking. Many pervasive techniques are found in current literature, but only scant research has been conducted on their effectiveness in target tracking. Design/methodology/approach This research paper, introduces a Shifted Rayleigh Filter (SHRF) for three-dimensional (3 D) underwater target tracking. A comparison is drawn between the SHRF and previously proven method Unscented Kalman Filter (UKF). Findings SHRF is especially suitable for long-range scenarios to track a target with less solution convergence compared to UKF. In this analysis, the problem of determining the target location and speed from noise corrupted measurements of bearing, elevation by a single moving target is considered. SHRF is generated and its performance is evaluated for the target motion analysis approach. Originality/value The proposed filter performs better than UKF, especially for long-range scenarios. Experimental results from Monte Carlo are provided using MATLAB and the enhancements achieved by the SHRF techniques are evident.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Kavitha Lakshmi ◽  
S. Koteswara Rao ◽  
Kodukula Subrahmanyam

PurposeNowadays advancement in acoustic technology can be explored with marine assets. The purpose of the paper is pervasive computing underwater target tracking has aroused military and civilian interest as a key component of ocean exploration. While many pervasive techniques are currently found in the literature, there is little published research on the effectiveness of these paradigms in the target tracking context.Design/methodology/approachThe unscented Kalman filter (UKF) provides good results for bearing and elevation angles only tracking. Detailed methodology and mathematical modeling are carried out and used to analyze the performance of the filter based on the Monte Carlo simulation.FindingsDue to the intricacy of maritime surroundings, tracking underwater targets using acoustic signals, without knowing the range parameter is difficult. The intention is to find out the solution in terms of standard deviation in a three-dimensional (3D) space.Originality/valueA new method is found for the acceptance criteria for range, course, speed and pitch based on the standard deviation for bearing and elevation 3D target tracking using the unscented Kalman filter covariance matrix. In the Monte Carlo simulation, several scenarios are used and the results are shown.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-24
Author(s):  
Kavitha Lakshmi M. ◽  
Koteswara Rao S. ◽  
Subrahmanyam Kodukula

In underwater surveillance, three-dimensional target tracking is a challenging task. The angles-only measurements (i.e., bearing and elevation) obtained by hull mounted sensors are considered to appraise the target motion parameter. Due to noise in measurements and nonlinearity of the system, it is very hard to find out the target location. For many applications, UKF is best estimator that remaining algorithms. Recently, cubature Kalman filter (CKF) is also popular. It is proposed to use UKF (unscented Kalman filter) and CKF (cubature Kalman filter) algorithms that minimize the noise in measurements. So far, researchers carried out this work (target tracking) in Gaussian noise environment, whereas in this paper same work is carried out for non-Gaussian noise environment. The performance evaluation of the filters using Monte-Carlo simulation and Cramer-Rao lower bound (CRLB) is accomplished and the results are analyzed. Result shows that UKF is well suitable for highly nonlinear systems than CKF.


2020 ◽  
Vol 42 (14) ◽  
pp. 2645-2659
Author(s):  
Yingchao Xiao ◽  
Jun Zhou ◽  
Bin Zhao

The accuracy of three-dimensional (3D) passive target tracking under strap-down system is usually affected by the measurement accuracy of attitude angular rate and attitude angle. In order to save the problem, a novel 3D passive target tracking method based on instrumental variable Kalman filter (IVKF) aided by the attitude dynamic is proposed. At first, the maneuvering target motion model is established based on the “current” statistical model and the filtering equation of MEMS inertial measurement unit (IMU) is also set up. Then, linearize the nonlinear state equations and replace the nonlinear measurement equations with pseudolinear equations. The 3D pseudolinear Kalman filter (PLKF) algorithm is derived according to the linear Kalman filter (KF). To counter the severe bias problems with PLKF, bias compensation and recursive instrumental variable (IV) methods are considered. In order to enhance observability of the system, a 3D motion tracking sliding-mode guidance law is deduced. Finally, some mathematical simulations were made to verify the effectiveness of the proposed method. The simulation results show the effect of the measurement accuracy and complexity of the algorithm are reduced, which proves the validity of the method.


Author(s):  
K. Lova Raju ◽  
S. Koteswara Rao ◽  
Rudra Pratap Das ◽  
M. Nalini Santhosh ◽  
A. Sampath Dakshina Murthy

Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 740 ◽  
Author(s):  
Li ◽  
Zhao ◽  
Yu ◽  
Wei

Underwater target tracking system can be kept covert using the bearing-only or the bearing-Doppler measurements (passive measurements), which will reduce the risk of been detected. According to the characteristics of underwater target tracking, the square root unscented Kalman filter (SRUKF) algorithm, which is based on the Bayesian theory, was applied to the underwater bearing-only and bearing-Doppler non-maneuverable target tracking problem. Aiming at the shortcomings of the unscented Kalman filter (UKF), the SRUKF uses the QR decomposition and the Cholesky factor updating, in order to avoid that the process noise covariance matrix loses its positive definiteness during the target tracking period. The SRUKF uses sigma sampling to avoid the linearization of the nonlinear bearing-only and the bearing-Doppler measurements. To ensure the target state observability in underwater target tracking, the paper uses single maneuvering observer to track the single non-maneuverable target. The simulation results show that the SRUKF has better tracking performance than the extended Kalman filter (EKF) and the UKF in tracking accuracy and stability, and the computational complexity of the SRUKF algorithm is low.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1088 ◽  
Author(s):  
Wasiq Ali ◽  
Yaan Li ◽  
Zhe Chen ◽  
Muhammad Asif Zahoor Raja ◽  
Nauman Ahmed ◽  
...  

In this paper, an application of spherical radial cubature Bayesian filtering and smoothing algorithms is presented to solve a typical underwater bearings only passive target tracking problem effectively. Generally, passive target tracking problems in the ocean environment are represented with the state-space model having linear system dynamics merged with nonlinear passive measurements, and the system is analyzed with nonlinear filtering algorithms. In the present scheme, an application of spherical radial cubature Bayesian filtering and smoothing is efficiently investigated for accurate state estimation of a far-field moving target in complex ocean environments. The nonlinear model of a Kalman filter based on a Spherical Radial Cubature Kalman Filter (SRCKF) and discrete-time Kalman smoother known as a Spherical Radial Cubature Rauch–Tung–Striebel (SRCRTS) smoother are applied for tracking the semi-curved and curved trajectory of a moving object. The worth of spherical radial cubature Bayesian filtering and smoothing algorithms is validated by comparing with a conventional Unscented Kalman Filter (UKF) and an Unscented Rauch–Tung–Striebel (URTS) smoother. Performance analysis of these techniques is performed for white Gaussian measured noise variations, which is a significant factor in passive target tracking, while the Bearings Only Tracking (BOT) technology is used for modeling of a passive target tracking framework. Simulations based experiments are executed for obtaining least Root Mean Square Error (RMSE) among a true and estimated position of a moving target at every time instant in Cartesian coordinates. Numerical results endorsed the validation of SRCKF and SRCRTS smoothers with better convergence and accuracy rates than that of UKF and URTS for each scenario of passive target tracking problem.


Sign in / Sign up

Export Citation Format

Share Document