Towards ubiquitous human gestures recognition using wireless networks

2017 ◽  
Vol 13 (4) ◽  
pp. 408-418 ◽  
Author(s):  
Mustafa S. Aljumaily ◽  
Ghaida A. Al-Suhail

Purpose Recently, many researches have been devoted to studying the possibility of using wireless signals of the Wi-Fi networks in human-gesture recognition. They focus on classifying gestures despite who is performing them, and only a few of the previous work make use of the wireless channel state information in identifying humans. This paper aims to recognize different humans and their multiple gestures in an indoor environment. Design/methodology/approach The authors designed a gesture recognition system that consists of channel state information data collection, preprocessing, features extraction and classification to guess the human and the gesture in the vicinity of a Wi-Fi-enabled device with modified Wi-Fi-device driver to collect the channel state information, and process it in real time. Findings The proposed system proved to work well for different humans and different gestures with an accuracy that ranges from 87 per cent for multiple humans and multiple gestures to 98 per cent for individual humans’ gesture recognition. Originality/value This paper used new preprocessing and filtering techniques, proposed new features to be extracted from the data and new classification method that have not been used in this field before.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 222
Author(s):  
Tao Li ◽  
Chenqi Shi ◽  
Peihao Li ◽  
Pengpeng Chen

In this paper, we propose a novel gesture recognition system based on a smartphone. Due to the limitation of Channel State Information (CSI) extraction equipment, existing WiFi-based gesture recognition is limited to the microcomputer terminal equipped with Intel 5300 or Atheros 9580 network cards. Therefore, accurate gesture recognition can only be performed in an area relatively fixed to the transceiver link. The new gesture recognition system proposed by us breaks this limitation. First, we use nexmon firmware to obtain 256 CSI subcarriers from the bottom layer of the smartphone in IEEE 802.11ac mode on 80 MHz bandwidth to realize the gesture recognition system’s mobility. Second, we adopt the cross-correlation method to integrate the extracted CSI features in the time and frequency domain to reduce the influence of changes in the smartphone location. Third, we use a new improved DTW algorithm to classify and recognize gestures. We implemented vast experiments to verify the system’s recognition accuracy at different distances in different directions and environments. The results show that the system can effectively improve the recognition accuracy.


2021 ◽  
Vol 11 (8) ◽  
pp. 3329
Author(s):  
Pengli Hu ◽  
Chengpei Tang ◽  
Kang Yin ◽  
Xie Zhang

Wi-Fi sensing technology based on deep learning has contributed many breakthroughs in gesture recognition tasks. However, most methods concentrate on single domain recognition with high computational complexity while rarely investigating cross-domain recognition with lightweight performance, which cannot meet the requirements of high recognition performance and low computational complexity in an actual gesture recognition system. Inspired by the few-shot learning methods, we propose WiGR, a Wi-Fi-based gesture recognition system. The key structure of WiGR is a lightweight few-shot learning network that introduces some lightweight blocks to achieve lower computational complexity. Moreover, the network can learn a transferable similarity evaluation ability from the training set and apply the learned knowledge to the new domain to address domain shift problems. In addition, we made a channel state information (CSI)-Domain Adaptation (CSIDA) data set that includes channel state information (CSI) traces with various domain factors (i.e., environment, users, and locations) and conducted extensive experiments on two data sets (CSIDA and SignFi). The evaluation results show that WiGR can reach 87.8%–94.8% cross-domain accuracy, and the parameters and the calculations are reduced by more than 50%. Extensive experiments demonstrate that WiGR can achieve excellent recognition performance using only a few samples and is thus a lightweight and practical gesture recognition system compared with state-of-the-art methods.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4025
Author(s):  
Zhanjun Hao ◽  
Yu Duan ◽  
Xiaochao Dang ◽  
Yang Liu ◽  
Daiyang Zhang

In recent years, with the development of wireless sensing technology and the widespread popularity of WiFi devices, human perception based on WiFi has become possible, and gesture recognition has become an active topic in the field of human-computer interaction. As a kind of gesture, sign language is widely used in life. The establishment of an effective sign language recognition system can help people with aphasia and hearing impairment to better interact with the computer and facilitate their daily life. For this reason, this paper proposes a contactless fine-grained gesture recognition method using Channel State Information (CSI), namely Wi-SL. This method uses a commercial WiFi device to establish the correlation mapping between the amplitude and phase difference information of the subcarrier level in the wireless signal and the sign language action, without requiring the user to wear any device. We combine an efficient denoising method to filter environmental interference with an effective selection of optimal subcarriers to reduce the computational cost of the system. We also use K-means combined with a Bagging algorithm to optimize the Support Vector Machine (SVM) classification (KSB) model to enhance the classification of sign language action data. We implemented the algorithms and evaluated them for three different scenarios. The experimental results show that the average accuracy of Wi-SL gesture recognition can reach 95.8%, which realizes device-free, non-invasive, high-precision sign language gesture recognition.


2021 ◽  
Author(s):  
◽  
Ahmed Abid-Awn Al-Asadi

The rapid growth in internet applications such as video streaming enforce the researcher to explore a new wireless technique to ensure high signal to interference noise ratio (SINR) at the end users, leading to high quality of service (QOS). The fourth generation (4G) wireless technologies introduced a with promising technique known as multiple-input-multiple-output (MIMO) paradigm. The MIMO offers spatial diversity of multiple signals between the source and the destination which can ensure high concentration of the desired power at the destination as well as combat the unwanted interference which can be done by the beamforming technique, implemented in two ways the up-link and the down-link. Two methods of beamforming have been addressed in MIMO wireless communications, the first consider the minimization of transmitted power for predefined SINR at the receiver and the second approach consider maximization of SINR at the recipient while maintaining the power at the sender to a small fixed value. Rigid beamforming is assured when the accurate channel state information (CSI) of the wireless system are acquired at the beamforming side. Because of some practical limitations in wireless systems such as feedback error, dynamic characteristics of wireless channel, etc., the ideal CSI cannot be obtained and thus the beamforming must consider the error in CSI. Three type of solutions have been developed to combat the effect of uncertain CSI these solutions are the non-robust, the sub-optimal and the robust solution. In this work the sub-optimal and the robust downlink beamforming in conventional wireless network are addressed. The solution considers a multicast, multi-group, multicell scenario. The uncertainty in CSI is modeled mathematically using Frobinius norm and the beamforming method used is the QOS method where the minimum SINR over all groups is maximized for small predefined transmitted power. Because the problem is difficult to be solved as a single optimization problem, it is divided into two problems. The first problem eliminates the effect of CSI uncertainty using the non-monotone spectral projected gradient (NMSPG) method, and the second problems use the successive convex approximation (SCA) method to extract the beamforming vectors for each group. The procedure goes through an iterate-alternative convex technique between the two methods until stopped by some predefined criteria. Wireless communication researchers have also achieved significant development in the area of spectrum scarcity by introducing the cognitive radio (CR) network. In a CR network the secondary users (SUs) can utilize the licensed frequency that is underutilized by the primary users (PUs). Two type of CR network were developed, the overlay and the underlay CR network. The beamforming in an overlay CR network follows the same procedure as in a conventional network while in an underlay CR network an extra constraint must be added to the beamforming problem which makes the problem more difficult to solved. In this thesis the beamforming problem in a CR network with multiple secondary transmitters that generate multiple beamforming vectors to multiple groups of secondary receivers under uncertain CSI are analyzed and solved. Two solutions were developed: the sub-optimal and the robust solutions. For the sub-optimal solution, the problem is split into two problems, the QOS and the interference power problem to combat the effect of CSI uncertainty then the two problems are combined to find the beamforming vectors using the SCA method. For the robust solution, the problem is also divided into two problems, the QOS and the interference power problem to eliminate the CSI uncertainty. The interference power problem is solved using the Lagrangian duality. The QOS problem is solved using the Lagrangian duality and the NMSPG method. after addressing CSI uncertainty, the beamforming vectors are extracted using the SCA method and, solved using the bisection search method.


2019 ◽  
Vol 57 (3) ◽  
pp. 28-34 ◽  
Author(s):  
Zhiyuan Jiang ◽  
Sheng Chen ◽  
Andreas F. Molisch ◽  
Rath Vannithamby ◽  
Sheng Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document