scholarly journals A Novel Gesture Recognition System Based on CSI Extracted from a Smartphone with Nexmon Firmware

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 222
Author(s):  
Tao Li ◽  
Chenqi Shi ◽  
Peihao Li ◽  
Pengpeng Chen

In this paper, we propose a novel gesture recognition system based on a smartphone. Due to the limitation of Channel State Information (CSI) extraction equipment, existing WiFi-based gesture recognition is limited to the microcomputer terminal equipped with Intel 5300 or Atheros 9580 network cards. Therefore, accurate gesture recognition can only be performed in an area relatively fixed to the transceiver link. The new gesture recognition system proposed by us breaks this limitation. First, we use nexmon firmware to obtain 256 CSI subcarriers from the bottom layer of the smartphone in IEEE 802.11ac mode on 80 MHz bandwidth to realize the gesture recognition system’s mobility. Second, we adopt the cross-correlation method to integrate the extracted CSI features in the time and frequency domain to reduce the influence of changes in the smartphone location. Third, we use a new improved DTW algorithm to classify and recognize gestures. We implemented vast experiments to verify the system’s recognition accuracy at different distances in different directions and environments. The results show that the system can effectively improve the recognition accuracy.

2017 ◽  
Vol 13 (4) ◽  
pp. 408-418 ◽  
Author(s):  
Mustafa S. Aljumaily ◽  
Ghaida A. Al-Suhail

Purpose Recently, many researches have been devoted to studying the possibility of using wireless signals of the Wi-Fi networks in human-gesture recognition. They focus on classifying gestures despite who is performing them, and only a few of the previous work make use of the wireless channel state information in identifying humans. This paper aims to recognize different humans and their multiple gestures in an indoor environment. Design/methodology/approach The authors designed a gesture recognition system that consists of channel state information data collection, preprocessing, features extraction and classification to guess the human and the gesture in the vicinity of a Wi-Fi-enabled device with modified Wi-Fi-device driver to collect the channel state information, and process it in real time. Findings The proposed system proved to work well for different humans and different gestures with an accuracy that ranges from 87 per cent for multiple humans and multiple gestures to 98 per cent for individual humans’ gesture recognition. Originality/value This paper used new preprocessing and filtering techniques, proposed new features to be extracted from the data and new classification method that have not been used in this field before.


2021 ◽  
Vol 11 (8) ◽  
pp. 3329
Author(s):  
Pengli Hu ◽  
Chengpei Tang ◽  
Kang Yin ◽  
Xie Zhang

Wi-Fi sensing technology based on deep learning has contributed many breakthroughs in gesture recognition tasks. However, most methods concentrate on single domain recognition with high computational complexity while rarely investigating cross-domain recognition with lightweight performance, which cannot meet the requirements of high recognition performance and low computational complexity in an actual gesture recognition system. Inspired by the few-shot learning methods, we propose WiGR, a Wi-Fi-based gesture recognition system. The key structure of WiGR is a lightweight few-shot learning network that introduces some lightweight blocks to achieve lower computational complexity. Moreover, the network can learn a transferable similarity evaluation ability from the training set and apply the learned knowledge to the new domain to address domain shift problems. In addition, we made a channel state information (CSI)-Domain Adaptation (CSIDA) data set that includes channel state information (CSI) traces with various domain factors (i.e., environment, users, and locations) and conducted extensive experiments on two data sets (CSIDA and SignFi). The evaluation results show that WiGR can reach 87.8%–94.8% cross-domain accuracy, and the parameters and the calculations are reduced by more than 50%. Extensive experiments demonstrate that WiGR can achieve excellent recognition performance using only a few samples and is thus a lightweight and practical gesture recognition system compared with state-of-the-art methods.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4025
Author(s):  
Zhanjun Hao ◽  
Yu Duan ◽  
Xiaochao Dang ◽  
Yang Liu ◽  
Daiyang Zhang

In recent years, with the development of wireless sensing technology and the widespread popularity of WiFi devices, human perception based on WiFi has become possible, and gesture recognition has become an active topic in the field of human-computer interaction. As a kind of gesture, sign language is widely used in life. The establishment of an effective sign language recognition system can help people with aphasia and hearing impairment to better interact with the computer and facilitate their daily life. For this reason, this paper proposes a contactless fine-grained gesture recognition method using Channel State Information (CSI), namely Wi-SL. This method uses a commercial WiFi device to establish the correlation mapping between the amplitude and phase difference information of the subcarrier level in the wireless signal and the sign language action, without requiring the user to wear any device. We combine an efficient denoising method to filter environmental interference with an effective selection of optimal subcarriers to reduce the computational cost of the system. We also use K-means combined with a Bagging algorithm to optimize the Support Vector Machine (SVM) classification (KSB) model to enhance the classification of sign language action data. We implemented the algorithms and evaluated them for three different scenarios. The experimental results show that the average accuracy of Wi-SL gesture recognition can reach 95.8%, which realizes device-free, non-invasive, high-precision sign language gesture recognition.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Tomas Palenik ◽  
Peter Farkas

Common OFDM system contains redundancy necessary to mitigate interblock interference and allows computationally effective single-tap frequency domain equalization in receiver. Assuming the system implements an outer error correcting code and channel state information is available in the receiver, we show that it is possible to understand the cyclic prefix insertion as a weak inner ECC encoding and exploit the introduced redundancy to slightly improve error performance of such a system. In this paper, an easy way to implement modification to an existing SDR OFDM receiver is presented. This modification enables the utilization of prefix redundancy, while preserving full compatibility with existing OFDM-based communication standards.


Sign in / Sign up

Export Citation Format

Share Document