Analysis of factors influencing delamination in milling process of glass fibre reinforced plastic (GFRP) composite materials

2013 ◽  
Vol 9 (3) ◽  
pp. 293-306 ◽  
Author(s):  
Jenarthanan Mugundhu ◽  
R. Jeyapaul ◽  
Naresh Neeli
2012 ◽  
Vol 472-475 ◽  
pp. 958-961 ◽  
Author(s):  
Líska János ◽  
Kodácsy János

Nowadays composite materials are used in many industrial areas. The main application of these is the aircraft industry. Problematic points with machining of composite materials are tool wear, tool life, delamination and temperature during machining of polymer composite materials. Paper focuses on investigation of delamination at drilling of glass fibre reinforced composites. Experiments were planned on the base so called design of experiment - DOE. We observed the evolution of delamination at investigations, when we combined 4 different variables (vc, fz, tool, cooling system). We investigated the evolution of force relations, torques, dimensional and shape accuracy, considering on delamination. We processed results statistically, for processing we used software MINITAB and MATLAB. We summarized results in tables and graphs.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880734
Author(s):  
Jian He ◽  
Dongyuan Xie ◽  
Qichao Xue ◽  
Yangyang Zhan

The diffusion influence of seawater on the static and interlayer cracking properties of a polyvinyl chloride foam sandwich structure is investigated in this study. After soaking specimens in seawater for various durations, various comparison tests are performed to investigate the effects of seawater. Compression tests for H60 and H200 polyvinyl chloride foam specimens are conducted to study strength and modulus degradation, and the results show that immerging time and temperature have significant effects on polyvinyl chloride foam properties. Tensile tests for glass-fibre-reinforced plastic panels, four-point bending tests and double cantilever bending tests for polyvinyl chloride foam sandwich specimens are also performed. The results show that seawater immerging treatment has a noticeable influence on glass-fibre-reinforced plastic tensile properties and interlayer critical energy release rate values, but has almost no effect on bending properties of foam sandwich specimen. Furthermore, a rate-dependent phenomenon is observed in double cantilever bending tests, in which higher loading rate will lead to larger critical energy release values. Numerical simulation is also performed to illustrate the cracking process of double cantilever bending tests and shows a certain accuracy. The simulation also demonstrates that the viscoelasticity of foam material after immerging treatment results in the rate-dependent characterization of double cantilever bending tests.


Sign in / Sign up

Export Citation Format

Share Document