Hygro-thermally induced stress intensity factor of an edge crack piezo laminated composite plate

2019 ◽  
Vol 15 (6) ◽  
pp. 1053-1074
Author(s):  
Achchhe Lal ◽  
Khushbu Jain

Purpose The purpose of this paper is to evaluate hygro-thermo-mechanically induced normalized stress intensity factor (NSIF) of an edge crack symmetric angle-ply piezo laminated composite plate (PLCP) using displacement correlation method. Design/methodology/approach In the present work, the governing equations are solved through conventional finite element method combined with higher order shear deformation plate theory utilizing the micromechanical approach. Findings The effects of crack length, the thickness of the plate and piezoelectric layer, stacking sequences, fiber volume fraction, position of piezoelectric layer, change in moisture and temperature, and voltage on the NSIF are examined. The numerical results are presented in the form of a table for the better understanding and accuracy. The present outlined approach is validated with results available in the literature. These results can become a benchmark for future studies. Research limitations/implications The mathematical models theoretically have been developed by considering different parameters. The results are generated using MATLAB 2015 software developed by the authors’ side. Originality/value The fracture analysis of a single edge crack PLCP with the effect of a piezoelectric layer at the different location of cracked structures, plate thickness, and actuator voltage and hygro-thermo loading is the novelty of research for health monitoring and high-performance analysis.

2021 ◽  
Vol 8 (1) ◽  
pp. 1-12
Author(s):  
Ashok Magar ◽  
Achchhe Lal

Abstract This paper presents the solution of stress distribution around elliptical cutout in an infinite laminated composite plate. Analysis is done for in plane loading under hygrothermal environment. The formulation to obtain stresses around elliptical hole is based on Muskhelishvili’s complex variable method. The effect of fibre angle, type of in plane loading, volume fraction of fibre, change in temperature, fibre materials, stacking sequence and environmental conditions on stress distribution around elliptical hole is presented. The study revealed, these factors have significant effect on stress concentration in hygrothermal environment and stress concentration changes are significant with change in temperature.


2010 ◽  
Vol 1 (4) ◽  
pp. 344-357 ◽  
Author(s):  
V. Richter‐Trummer ◽  
P.M.G.P. Moreira ◽  
S.D. Pastrama ◽  
M.A.P. Vaz ◽  
P.M.S.T. de Castro

PurposeThe purpose of this paper is to develop a methodology for in situ stress intensity factor (SIF) determination that can be used for the analysis of cracked structures. The technique is based on digital image correlation (DIC) combined with an overdetermined algorithm.Design/methodology/approachThe linear overdeterministic algorithm for calculating the SIF based on stress values around the crack tip is applied to a strain field obtained by DIC.FindingsAs long as the image quality is sufficiently high, a good accuracy can be obtained for the measured SIF. The crack tip can be automatically detected based on the same strain field. The use of the strain field instead of the displacement field, eliminates problems related to the rigid body motion of the analysed structure.Practical implicationsIn future works, based on the applied techniques, the SIF of complex cracked plane stress structures can be accurately determined in real engineering applications.Originality/valueThe paper demonstrates application of known techniques, refined for other applications, also the use of stress field for SIF overdeterministic calculations.


1989 ◽  
Vol 33 (03) ◽  
pp. 214-220
Author(s):  
Paul C. Xirouchakis ◽  
George N. Makrakis

The behavior of a long elastic strip with an edge crack resting on a liquid foundation is investigated. The faces of the crack are opened by an applied pressure loading. The deformation of the strip is considered within the framework of the linear theory of elasticity assuming plane-stress conditions. Fourier transform techniques are employed to obtain integral expressions for the stresses and displacements. The boundary-value problem is reduced to the solution of a Fredholm integral equation of the second kind. For the particular case of linear pressure loading, the stress-intensity factor is calculated and its dependence is shown on the depth of the crack relative to the thickness of the strip. Application of the present results to the problem of flexure of floating ice strips is discussed.


2017 ◽  
Vol 8 (5) ◽  
pp. 506-515 ◽  
Author(s):  
Raviraj M.S. ◽  
Sharanaprabhu C.M. ◽  
Mohankumar G.C.

Purpose The purpose of this paper is to present the determination of critical stress intensity factor (KC) both by experimental method and three-dimensional (3D) finite element simulations. Design/methodology/approach CT specimens of different compositions of Al6061-TiC composites (3wt%, 5wt% and 7wt% TiC) with variable crack length to width (a/W=0.3-0.6) ratios are machined from as-cast composite block. After fatigue pre-cracking the specimens to a required crack length, experimental load vs crack mouth opening displacement data are plotted to calculate the KC value. Elastic 3D finite element simulations have been conducted for CT specimens of various compositions and a/W ratios to compute KC. The experimental results indicate that the magnitude of KC depends on a/W ratios, and significantly decreases with increase in a/W ratios of the specimen. Findings From 3D finite element simulation, the KC results at the centre of CT specimens for various Al6061-TiC composites and a/W ratios show satisfactory agreement with experimental results compared to the surface. Originality/value The research work contained in this manuscript was conducted during 2015-2016. It is original work except where due reference is made. The authors confirm that the research in their work is original, and that all the data given in the article are real and authentic. If necessary, the paper can be recalled, and errors corrected.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1526
Author(s):  
Yang Liu ◽  
Shutian Liu

The diffusion bonding titanium alloy laminates with preset unbonded area (DBTALPUA) compared with other titanium alloy structural forms has good damage tolerance performance and designability. It is important to fast get the damage estimation of the DBTALPUA with crack. The stress intensity factor (SIF) of the crack is an effective indicator to give the damage estimation. In order to get the SIF fast, this paper proposed an analytical model to calculate SIF for single hole-edge crack in DBTALPUA with hole under tension loading. Comparison of the results obtained through this analytical model and numerical simulation illustrated that the analytical model can rapidly predict the SIF with fine precision.


Sign in / Sign up

Export Citation Format

Share Document