scholarly journals Stress analysis of infinite laminated composite plate with elliptical cutout under different in plane loadings in hygrothermal environment

2021 ◽  
Vol 8 (1) ◽  
pp. 1-12
Author(s):  
Ashok Magar ◽  
Achchhe Lal

Abstract This paper presents the solution of stress distribution around elliptical cutout in an infinite laminated composite plate. Analysis is done for in plane loading under hygrothermal environment. The formulation to obtain stresses around elliptical hole is based on Muskhelishvili’s complex variable method. The effect of fibre angle, type of in plane loading, volume fraction of fibre, change in temperature, fibre materials, stacking sequence and environmental conditions on stress distribution around elliptical hole is presented. The study revealed, these factors have significant effect on stress concentration in hygrothermal environment and stress concentration changes are significant with change in temperature.

2019 ◽  
Vol 11 (08) ◽  
pp. 1950076 ◽  
Author(s):  
Achchhe Lal ◽  
Rahul Kumar

This paper presents the second-order statistics of hygro-thermo-electrically-induced progressive failure in terms of first-ply failure load (FPFL) and last-ply failure load (LPFL) analysis for laminated composite material plate (LCMP) under out of plane mechanical loading with random system properties. Basic governing equation of nonlinear progressive failure analysis is based on shear deformation theory (higher order) with von-Karman nonlinear kinematics using Newton’s Raphson approach through Tsai–Wu failure criteria. The random input variables are assumed as uncorrelated type and are evaluated using second-order perturbation method (SOPT). Laminated composite plate with elliptical cutouts are subjected to uniformly distributed, point and hydrostatic load. The effect of boundary conditions, temperature variation, moisture content and voltage variations by utilizing piezoelectric layer position and various cutout shapes on the mean and corresponding covariance (COV) of FPFL and LPFL load are evaluated. Convergence of numerical analysis is performed, and results are validated with those available in literatures to check the efficiency of present methodology. It is observed that the presence of elliptical hole always causes an increase in the failure load of plates subjected to bending, even further increase for LPFL due to the reduction of stresses.


2019 ◽  
Vol 15 (6) ◽  
pp. 1053-1074
Author(s):  
Achchhe Lal ◽  
Khushbu Jain

Purpose The purpose of this paper is to evaluate hygro-thermo-mechanically induced normalized stress intensity factor (NSIF) of an edge crack symmetric angle-ply piezo laminated composite plate (PLCP) using displacement correlation method. Design/methodology/approach In the present work, the governing equations are solved through conventional finite element method combined with higher order shear deformation plate theory utilizing the micromechanical approach. Findings The effects of crack length, the thickness of the plate and piezoelectric layer, stacking sequences, fiber volume fraction, position of piezoelectric layer, change in moisture and temperature, and voltage on the NSIF are examined. The numerical results are presented in the form of a table for the better understanding and accuracy. The present outlined approach is validated with results available in the literature. These results can become a benchmark for future studies. Research limitations/implications The mathematical models theoretically have been developed by considering different parameters. The results are generated using MATLAB 2015 software developed by the authors’ side. Originality/value The fracture analysis of a single edge crack PLCP with the effect of a piezoelectric layer at the different location of cracked structures, plate thickness, and actuator voltage and hygro-thermo loading is the novelty of research for health monitoring and high-performance analysis.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Achchhe Lal ◽  
Nikhil M. Kulkarni ◽  
B.N. Singh

AbstractIn this paper, second order statistics of thermally induced post buckling response of elastically supported piezoelectric laminated composite plate using micromechanical approach is examined. A Co finite element has been used for deriving eigenvalue problem using higher order shear deformation theory (HSDT) with von-Karman nonlinearity. The uncertain system properties such as material properties of fiber and matrix of composite and piezoelectric, fiber volume fraction, plate thickness, lamination angle and foundation are modeled as random variables. The temperature field considered to be uniform temperature distributions through the plate thickness. A direct iterative based nonlinear finite element method combined with mean-centered second order perturbation technique (SOPT) is used to find the mean and coefficient of variance of the post buckling temperature. The effects of volume fraction, fiber orientation, and length to thickness ratio, aspect ratios, foundation parameters, position and number of piezoelectric layers, amplitude and boundary conditions with random system properties on the critical temperature are analysed. It is found that small amount of variations of uncertain system parameters of the composite plate significantly affect the initial and post buckling temperature of laminated composite plate. The results have been validated with independent Monte Carlo simulation (MCS) and those available in literature.


Sign in / Sign up

Export Citation Format

Share Document