MHD flow and heat transfer analysis of Newtonian and non-Newtonian nanofluids due to an inclined stretching surface

2019 ◽  
Vol 16 (1) ◽  
pp. 134-155
Author(s):  
Mahantesh M. Nandeppanavar ◽  
T. Srinivasulu ◽  
Shanker Bandari

Purpose The purpose of this paper is to study the flow, heat and mass transfer of MHD Casson nanofluid due to an inclined stretching sheet using similarity transformation, the governing PDE’S equations of flow, heat and mass transfer are converted into ODE’S. The resulting non-linear ODE’S are solved numerically using an implicit finite difference method, which is known as Kellor-box method. The effects of various governing parameters on velocity, temperature and concentration are plotted for both Newtonian and non-Newtonian cases. The numerical values of skin friction, Nusselt number and Sherwood number are calculated and tabulated in various tables for different values of physical parameters. It is noticed that the effect of angle of inclination enhances the temperature and concentration profile whereas velocity decreases. The temperature decreases due to the increase in the parametric values of Pr and Gr due to thickening in the boundary layer. Design/methodology/approach Numerical method is applied to find the results. Findings Flow and heat transfer analysis w.r.t various flow and temperature are analyzed for different values of the physical parameters. Research limitations/implications The numerical values of skin friction, Nusselt number and Sherwood number are calculated and tabulated in various tables for different values of physical parameters. Practical implications The study of the boundary layer flow, heat and mass transfer is important due to its applications in industries and many manufacturing processes such as aerodynamic extrusion of plastic sheets and cooling of metallic sheets in a cooling bath. Originality/value Here in this paper the authors have investigated the MHD boundary layer flow of a Casson nanofluid over an inclined stretching sheet along with the Newtonian nanofluid as a limited.

Author(s):  
Macha Madhu ◽  
Naikoti Kishan ◽  
A. Chamkha

Purpose The purpose of this paper is to study the boundary layer flow and heat transfer of a power-law non-Newtonian nanofluid over a non-linearly stretching sheet. Design/methodology/approach The governing equations describing the problem are transformed into a nonlinear ordinary differential equations by suitable similarity transformations. The resulting equations for this investigation are solved numerically by using the variational finite element method. Findings It was found that the local Nusselt number increases by increasing the Prandtl number, stretching sheet parameter and decreases by increasing the power-law index, thermophoresis parameter and Lewis number. Increases in the stretching sheet parameter, Prandtl number and thermophoresis parameter decrease the local Sherwood number values. The effects of Brownian motion and Lewis number lead to increases in the local Sherwood number values. Originality/value The work is relatively original as very little work has been reported on non-Newtonian nanofluids.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Eshetu Haile ◽  
B. Shankar

Heat and mass transfer in the boundary-layer flow of unsteady viscous nanofluid along a vertical stretching sheet in the presence of magnetic field, thermal radiation, heat generation, and chemical reaction are presented in this paper. The sheet is situated in the xz-plane and y is normal to the surface directing towards the positive y-axis. The sheet is continuously stretching in the positive x-axis and the external magnetic field is applied to the system parallel to the positive y-axis. With the help of similarity transformations, the partial differential equations are transformed into a couple of nonlinear ordinary differential equations. The new problem is then solved numerically by a finite-difference scheme known as the Keller-box method. Effects of the necessary parameters in the flow field are explicitly studied and briefly explained graphically and in tabular form. For the selected values of the pertinent parameters appearing in the governing equations, numerical results of velocity, temperature, concentration, skin friction coefficient, Nusselt number, and Sherwood number are obtained. The results are compared to the works of others (from previously published journals) and they are found in excellent agreement.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Das ◽  
A.S. Banu ◽  
R.N. Jana

Purpose In various kinds of materials processes, heat and mass transfer control in nuclear phenomena, constructing buildings, turbines and electronic circuits, etc., there are numerous problems that cannot be enlightened by uniform wall temperature. To explore such physical phenomena researchers incorporate non-uniform or ramped temperature conditions at the boundary, the purpose of this paper is to achieve the closed-form solution of a time-dependent magnetohydrodynamic (MHD) boundary layer flow with heat and mass transfer of an electrically conducting non-Newtonian Casson fluid toward an infinite vertical plate subject to the ramped temperature and concentration (RTC). The consequences of chemical reaction in the mass equation and thermal radiation in the energy equation are encompassed in this analysis. The flow regime manifests with pertinent physical impacts of the magnetic field, thermal radiation, chemical reaction and heat generation/absorption. A first-order chemical reaction that is proportional to the concentration itself directly is assumed. The Rosseland approximation is adopted to describe the radiative heat flux in the energy equation. Design/methodology/approach The problem is formulated in terms of partial differential equations with the appropriate physical initial and boundary conditions. To make the governing equations dimensionless, some suitable non-dimensional variables are introduced. The resulting non-dimensional equations are solved analytically by applying the Laplace transform method. The mathematical expressions for skin friction, Nusselt number and Sherwood number are calculated and expressed in closed form. Impacts of various associated physical parameters on the pertinent flow quantities, namely, velocity, temperature and concentration profiles, skin friction, Nusselt number and Sherwood number, are demonstrated and analyzed via graphs and tables. Findings Graphical analysis reveals that the boundary layer flow and heat and mass transfer attributes are significantly varied for the embedded physical parameters in the case of constant temperature and concentration (CTC) as compared to RTC. It is worthy to note that the fluid velocity is high with CTC and lower for RTC. Also, the fluid velocity declines with the augmentation of the magnetic parameter. Moreover, growth in thermal radiation leads to a declination in the temperature profile. Practical implications The proposed model has relevance in numerous engineering and technical procedures including industries related to polymers, area of chemical productions, nuclear energy, electronics and aerodynamics. Encouraged by such applications, the present work is undertaken. Originality/value Literature review unveils that sundry studies have been carried out in the presence of uniform wall temperature. Few studies have been conducted by considering non-uniform or ramped wall temperature and concentration. The authors are focused on an analytical investigation of an unsteady MHD boundary layer flow with heat and mass transfer of non-Newtonian Casson fluid past a moving plate subject to the RTC at the plate. Based on the authors’ knowledge, the present study has, so far, not appeared in scientific communications. Obtained analytical solutions are verified by considering particular cases of the published works.


CFD letters ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 98-107
Author(s):  
Hazirah binti Mohd Azmi ◽  
Siti Suzilliana Putri Mohamed Isa ◽  
Norihan Md. Arifin

Sign in / Sign up

Export Citation Format

Share Document