nonlinearly stretching sheet
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 14)

H-INDEX

19
(FIVE YEARS 3)

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Soraya Torkaman ◽  
Ghasem Barid Loghmani ◽  
Mohammad Heydari ◽  
Abdul-Majid Wazwaz

Purpose The purpose of this paper is to investigate a three-dimensional boundary layer flow with considering heat and mass transfer on a nonlinearly stretching sheet by using a novel operational-matrix-based method. Design/methodology/approach The partial differential equations that governing the problem are converted into the system of nonlinear ordinary differential equations (ODEs) with considering suitable similarity transformations. A direct numerical method based on the operational matrices of integration and product for the linear barycentric rational basic functions is used to solve the nonlinear system of ODEs. Findings Graphical and tabular results are provided to illustrate the effect of various parameters involved in the problem on the velocity profiles, temperature distribution, nanoparticle volume fraction, Nusselt and Sherwood number and skin friction coefficient. Comparison between the obtained results, numerical results based on the Maple's dsolve (type = numeric) command and previous existing results affirms the efficiency and accuracy of the proposed method. Originality/value The motivation of the present study is to provide an effective computational method based on the operational matrices of the barycentric cardinal functions for solving the problem of three-dimensional nanofluid flow with heat and mass transfer. The convergence analysis of the presented scheme is discussed. The benefit of the proposed method (PM) is that, without using any collocation points, the governing equations are converted to the system of algebraic equations.


2020 ◽  
Vol 7 (3) ◽  
pp. 294-307
Author(s):  
Surya Kanta Mondal ◽  
Dulal Pal

Abstract In the present paper, bioconvective stagnation point flow of nanofluid containing gyrotactic microorganisms over a nonlinearly stretching sheet embedded in a porous medium is considered. The scaling group transformation method is introduced to obtain the similarity transformation to convert the governing partial differential equations to a set of ordinary differential equations. The reduced governing nonlinear differential equations are then solved numerically with Runge–Kutta–Fehlberg method. Differential transform method is employed to justify the results obtained by the numerical method. It is found that both the results matched nicely. It is noticed that the density of motile microorganism distribution grows high with an increase in the values of the bioconvection Peclet number. Further, the rate of heat transfer and the rate of mass transfer increase rapidly with an increment in the thermophoresis parameter, heat source parameter, chemical reaction parameter, and Brownian motion parameter, respectively. This work is relevant to engineering and biotechnological applications, such as in the design of bioconjugates and mass transfer enhancement of microfluidics.


2019 ◽  
Vol 24 (3) ◽  
pp. 489-508
Author(s):  
S.P. Anjali Devi ◽  
S. Mekala

Abstract Hydromagnetic flow of water based nanofluids over a nonlinearly stretching sheet in the presence of velocity slip, temperature jump, magnetic field, nonlinear thermal radiation, thermophoresis and Brownian motion has been studied. The article focuses on Cu water nanofluid and Ag water nanofluid. The similarity transformation technique is adopted to reduce the governing nonlinear partial differential equations into nonlinear ordinary differential equations and then they are solved numerically utilizing the Nachistem – Swigert shooting method along with the fourth order Runge Kutta integration technique. The influence of physical parameters on the flow, temperature and nanoparticle volume fraction are presented through graphs. Also the values of the skin friction coefficient at the wall and nondimensional rate of heat transfer are given in a tabular form. A comparative study with previous published results is also made.


Sign in / Sign up

Export Citation Format

Share Document