scholarly journals A freight train dispatching approach for handling perturbations: a real case for the longest heavy-haul railway in China

2020 ◽  
Vol 2 (2) ◽  
pp. 85-99
Author(s):  
Yaqin Zhang ◽  
Mingming Wang ◽  
Ruimin Wang ◽  
Zhipeng Li ◽  
Nan Zhang

Purpose This paper aims to reschedule the freight train timetable in case of disturbance to restore the train services as soon as possible. Design/methodology/approach Hence, an integer linear programming model for the real-time freight heavy-haul railway traffic management is developed in case of large primary delays caused by the delayed cargos loading. The proposed model based on the alternative graph at the microscopic level depicts the freight train movements in detail. Multiple dispatching measures such as re-timing and re-ordering are taken into account. Moreover, two objective functions, namely, the total final delays and the consecutive delays, are minimized in the freight trains dispatching problem. Findings Finally, a real-world computational experiment based on the Haolebaoji-Ji’an freight heavy-haul railway is implemented. The results of all disrupted cases are obtained within 10 s. The results give insight into that the consecutive delays are more than the total final delays when the same disrupted situation and the consecutive or total final delays increase as the primary delays increase. Originality/value An integer linear programming model based on the alternative graph for the real-time freight heavy-haul railway traffic management is developed in case of large primary delays caused by the delayed cargos loading. The method can be developed as the computer-aided tool for freight train dispatchers.

2019 ◽  
Vol 1 (1) ◽  
pp. 30-44 ◽  
Author(s):  
Yuqiang Wang ◽  
Yuguang Wei ◽  
Hua Shi ◽  
Xinyu Liu ◽  
Liyuan Feng ◽  
...  

Purpose The purpose of this paper is to study the unit train make-up scheme for loaded direction in the heavy haul railway. Design/methodology/approach A 0-1 nonlinear integer programming model with the aim of minimizing the idling period between actual train arrival time and expected train arrival time for all loaded unit trains are proposed. Findings The proposed model is applied into a case study based on Daqin heavy haul railway. Results show that the proposed model can offer operators an optimal unit train make-up scheme for loaded direction in heavy haul railway. Originality/value The proposed model can offer operators an optimal unit train make-up scheme for loaded direction in heavy haul railway.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rodrigo Martins ◽  
Francisco Fernandes ◽  
Virginia Infante ◽  
Antonio R. Andrade

PurposeThe purpose of this paper is to describe an integer linear programming model to schedule the maintenance crew and the maintenance tasks in a bus operating company.Design/methodology/approachThe proposed methodology relies on an integer linear programming model that finds feasible maintenance schedules. It minimizes the costs associated with maintenance crew and the costs associated with unavailability. The model is applied in a real-world case study of a Portuguese bus operating company. A constructive heuristic approach is put forward, based on solving the maintenance scheduling problem for each bus separately.FindingsThe heuristic finds better solutions than the exact methods (based on branch-and-bound techniques) in a much lower computational time.Practical implicationsThe results suggest the relevance of such heuristic approaches for maintenance scheduling in practice.Originality/valueThis proposed model is an effective decision-making support method that provides feasible maintenance schedules for the maintenance technicians and for the maintenance tasks in a fleet of buses. It also complies with several operational, technical and labour constraints.


2021 ◽  
Vol 13 (8) ◽  
pp. 4173
Author(s):  
Jianjun Fu ◽  
Junhua Chen

Coal heavy-haul railway has been aiming at maximizing capacity utilization, but ignoring energy consumption for a long time. With the focus on green production, heavy-haul railways need transportation organization plans that can balance energy consumption and capacity utilization. Based on this, this paper proposes a data mining + optimization framework that uses train trajectory data to estimate train energy consumption and then uses a mixed integer programming model to simultaneously optimize plans from energy and capacity aspects. We use Gaussian distribution to describe features of energy consumption under different situations, and build a multi-dimensional cube to store these features to connect with the optimization model. In addition, a branch-and-bound algorithm is design to solve the optimization model. From the sensitivity analyses we can conclude that (1) shortening the departure interval from 13 min to 9 min will generate more energy consumption, about 3.6%; (2) combining short-form trains (50 units) with long-form trains (100 units) while increasing the carrying capacity will generate more energy consumption, about 5~14%; and (3) by controlling weights of the optimization model, capacity–energy-balanced plans can be obtained. The results can contribute to improving the sustainability of railways.


2021 ◽  
pp. 107754632110079
Author(s):  
Bin Wang ◽  
Dengke Yang ◽  
Xinrong Zhang ◽  
Xingheng Jia

This study investigates the constraint-force driven control problem of virtual coupling. To solve the constraint force, the explicit equation of vehicle motion with equality constraints is established using the Udwadia–Kalaba approach. First of all, this study introduces a brief overview of virtual coupling concepts in the European Railway Traffic Management System and some scenes of virtual coupling. The control method is proposed to enable the mechanical system to follow the designed constraint. Moreover, the dynamic model for virtual coupling problem is established. Second, combined with the dynamic model, the equation constraint is designed to make the rail vehicle movenment reach the control objective. By solving the equation based on the Udwadia–Kalaba approach, the control inputs that can render the vehicle to move along the desired trajectory. Third, numerical simulation results demonstrate the effectiveness of the proposed method in virtual coupling problem.


Sign in / Sign up

Export Citation Format

Share Document