Empirical path loss models at 433 MHz in Himalayan snow for health monitoring

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajesh Kumar Garg ◽  
Surender Kumar Soni

Purpose The purpose of this paper is to investigate the effect of snow on the radio link performance of wireless sensor nodes in Indian Himalayan conditions and to propose empirical path loss models for radio wave propagation. Design/methodology/approach At the remote test site, one source and three listening wireless sensor nodes were deployed at frequency of 433 MHz. The path loss models are derived from experimental data collected during the period of snowfall and clear weather conditions. Linear, exponential, second and third-order polynomials path loss models have been investigated along with experimental data. Findings With the help of curve fitting and goodness-of-fit tests, it is found that path loss can be modelled through third-order polynomial equation during the snowfall period. However, if sensor is buried, the acceptable path loss model is exponential. Similarly, for unified modelling requirement, exponential path loss model over linear can be a preferred choice. Originality/value Results show that path loss can be estimated priori for deciding optimum transmission energy in wireless sensor network. Presented work is usable in extending the lifetime of health monitoring devices buried in snowy environment.

Author(s):  
Neal Patwari ◽  
Piyush Agrawal

A number of practical issues are involved in the use of measured received signal strength (RSS) for purposes of localization. This chapter focuses on device effects and modeling problems which are not well covered in the literature, such as transceiver device manufacturing variations, battery effects on transmit power, nonlinearities in RSSI circuits, and path loss model parameter estimation. The authors discuss both the negative impacts of these effects and inaccuracies, and adaptations used by particular localization algorithms to be robust to them, without discussing any algorithm in detail. The authors present measurement methodologies to characterize these effects for wireless sensor nodes, and report the results from several calibration experiments to quantify each discussed effect and modeling issue.


Sign in / Sign up

Export Citation Format

Share Document