A broadband free-space dielectric properties measurement system at millimeter wavelengths

1997 ◽  
Vol 46 (2) ◽  
pp. 515-518 ◽  
Author(s):  
G.L. Friedsam ◽  
E.M. Biebl
1957 ◽  
Vol 35 (9) ◽  
pp. 995-1003 ◽  
Author(s):  
A. G. Mungall ◽  
John Hart

The measurement of the complex dielectric constant of lossy liquids in the millimeter and centimeter wave region by a free-space technique is described. The method involves the measurement of absorption per wavelength and of reflectance at normal incidence. Families of curves are given for the relations between these two quantities and the real and imaginary parts of the complex dielectric constant. Results for ethyl and methyl alcohol at 9 and 13 mm. wavelength are compared with those obtained by waveguide techniques.


2021 ◽  
Vol 64 (4) ◽  
pp. 1373-1379
Author(s):  
Samir Trabelsi

HighlightsMoisture and water activity were determined nondestructively and in real time from measurement of dielectric properties.Moisture and water activity calibration equations were established in terms of the dielectric properties.Situations in which bulk density was known or unknown were considered.SEC ranged from 0.41% to 0.68% for moisture and from 0.02 to 0.04 for water activity.Abstract. A method for rapid and nondestructive determination of moisture content and water activity of granular and particulate materials was developed. The method relies on measurement of the dielectric constant and dielectric loss factor at a single microwave frequency. For the purpose of illustration, the method was applied to predicting the moisture content and water activity of almond kernels. A free-space transmission technique was used for accurate measurement of the dielectric properties. Samples of Bute Padre almond kernels with moisture content ranging from 4.8% to 16.5%, wet basis (w.b.), and water activity ranging from 0.50 to 0.93 were loaded into a Styrofoam sample holder and placed between two horn-lens antennas connected to a vector network analyzer. The dielectric properties were calculated from measurement of the attenuation and phase shift at 8 GHz and 25°C. The dielectric properties increased linearly with moisture content, while they showed an exponential increase with water activity. Situations in which the bulk density was known and unknown were considered. Linear and exponential growth regressions provided equations correlating the dielectric properties with moisture content and water activity with coefficients of determination (r2) higher than 0.96. Analytical expressions of moisture content and water activity in terms of the dielectric properties measured at 8 GHz and 25°C are provided. The standard error of calibration (SEC) was calculated for each calibration equation. Results show that moisture content can be predicted with SECs ranging from 0.41% to 0.68% (w.b.) and water activity with SECs ranging from 0.02 to 0.04 for almond kernel samples with water activity ranging from 0.5 to 0.9 and moisture contents ranging from 4.8% to 16.5% (w.b.). Keywords: Bulk density, Dielectric constant, Dielectric loss factor, Free-space measurements, Loss tangent, Microwave frequencies, Moisture content, Water activity.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2354
Author(s):  
Gerardo Aguila Rodriguez ◽  
Nayda Patricia Arias Duque ◽  
Blanca Estela Gonzalez Sanchez ◽  
Oscar Osvaldo Sandoval Gonzalez ◽  
Oscar Hernan Giraldo Osorio ◽  
...  

A sugar solution measurement system was developed based on the dielectric properties of the sucrose molecule. An ac conductivity and tan δ study as a function of the frequency was performed to find the suitable frequency range for the measuring system. The results indicate that it is possible to obtain a better response of the sensor using the frequencies as the maxima peak in tan δ appears. Developed setup for sucrose solution was appropriate to measure in a 0.15 to 1 g/mL range with an experimental error of about 3%. The proposed system improves the measurement time over some other methods.


Sign in / Sign up

Export Citation Format

Share Document