Behaviour of BeCu dynode photomultiplier tubes in high radiation fields and their use in fast neutron detection

1988 ◽  
Vol 35 (1) ◽  
pp. 368-371
Author(s):  
J.K. Mayer ◽  
J.J.G. Durocher ◽  
G.R. Smith
2016 ◽  
Vol 44 ◽  
pp. 1660234 ◽  
Author(s):  
L. Viererbl ◽  
V. Klupák ◽  
M. Vinš ◽  
M. Koleška ◽  
J. Šoltés ◽  
...  

Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu and LiCAF:Eu,Na single crystals, and another two samples were made of LiCAF:Eu micro crystals dispersed in transparent rubber, with different rubber dimensions. All LiCAF samples contain lithium enriched to[Formula: see text]Li. A plutonium–beryllium source was used as a neutron source. The neutron spectrum was modified by moderator and filter to get different ratios between thermal, epithermal and fast neutron fluence rates. The MCNP code was used for calculations of the fluence rates for different configurations. Radionuclides [Formula: see text]Cs and [Formula: see text]Co were applied as gamma radiation sources. The light signal from the scintillator was evaluated with a photomultiplier and a multichannel analyzer. The purpose of this work was to study the characteristics of LiCAF scintillators, especially the ability to discriminate signals from neutron and gamma radiation, which is the basic scintillator condition for neutron detection in mixed neutron-gamma radiation fields. Generally, the discrimination can be done by the pulse height and/or the pulse shape of the evaluated signals. Both methods can be used for a LiCAF scintillator. However, only the pulse height discrimination method is discussed in this paper. The possibility of fast neutron detection with LiCAF scintillators was also tested.


1983 ◽  
Vol 212 (1-3) ◽  
pp. 383-386 ◽  
Author(s):  
Maria Ranogajec-Komor ◽  
Margit Osvay ◽  
Igor Dvornik ◽  
Tamàs Biró

2018 ◽  
Vol 170 ◽  
pp. 07010 ◽  
Author(s):  
Vladimir D. Ryzhikov ◽  
Sergei V. Naydenov ◽  
Thierry Pochet ◽  
Gennadiy M. Onyshchenko ◽  
Leonid A. Piven ◽  
...  

We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium – designated as ZEBRA – serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron detection technologies.


2018 ◽  
Vol 65 (9) ◽  
pp. 2443-2447
Author(s):  
D. Fourmentel ◽  
J-F. Villard ◽  
C. Destouches ◽  
L. Barbot ◽  
B. Geslot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document