Friction factor and wall heat transfer for laminar and turbulent flow in a cylindrical duct with a wall-stabilized arc

1992 ◽  
Vol 20 (1) ◽  
pp. 30-33 ◽  
Author(s):  
Y.S. Levitan
ROTASI ◽  
2015 ◽  
Vol 17 (4) ◽  
pp. 182
Author(s):  
Syaiful Syaiful ◽  
Faza Dzulhimam

The purpose of this study is to investigate the thermal and hydrodynamic characteristics of air flowing in tubes with various inserts of grooved plate. Inserts of grooved plate with a variety of attack angles (a = 0°, 45° and 90°) has been studied in laminar and turbulent flow. Plate inserts are installed inside the tube intended to improve the heat transfer due to the mixing of the fluid. Numerical simulation of three-dimensional flow set as a model in the direction of fluid flow. The working fluid in the tube is cold, whereas hot wall temperature is kept constant. The results showed that the grooved plate inserts increases the heat transfer in the tube. For laminar flow, the highest heat transfer enhancement is obtained at the grooved plate inserts α = 45° i.e. from 4.46 to 20.34% with an increase in friction factor of 172.19 to 204.36%. As for the turbulent flow, the highest heat transfer improvement is found in a grooved plate inserts with α = 45° i.e. from 38.67 to 56.1% with an increase in friction factor of 183.5 to 262.29%.


2017 ◽  
Vol 41 (5) ◽  
pp. 771-786 ◽  
Author(s):  
Ashif Perwez ◽  
Shreyak Shende ◽  
Rakesh Kumar

An experimental and numerical investigation is performed to study the effect of dimple and protrusion geometry on the heat transfer enhancement and the friction factor of surfaces with dimples and protrusions subjected to turbulent flow. The parameters used to compare the spherical dimples and protrusions are Nusselt Number, friction factor, and flow pattern. These parameters are obtained for a Reynolds number of 10500-60900. The spherical dimple results showed the greater heat transfer, which is about 6.97% higher and pressure loss which is 5.07% lower than the spherical protrusion. The realistic heat transfer augmentation capabilities of channels with dimples and protrusions can be studied from the experimental results. The comparison is made with respect to the smooth rectangular channel under the same flow and thermal boundary conditions. The numerical analysis is performed which shows the different vortex flow structures of the spherical dimples and protrusions channel.


2021 ◽  
Vol 33 (6) ◽  
pp. 1105-1118
Author(s):  
Pei-jie Zhang ◽  
Jian-zhong Lin ◽  
Xiao-ke Ku

Author(s):  
Iulian Gherasim ◽  
Nicolas Galanis ◽  
Cong Tam Nguyen

The problem of turbulent flow and heat transfer in a two-channel plate heat exchanger was numerically investigated, considering its complex geometry as well as inlet and outlet ports effects. Results obtained for the flow and thermal field have clearly shown their asymmetrical behavior, which has important influence on the local heat transfer. Friction factor are found to be in good agreement with theoretical correlation.


2011 ◽  
Vol 201-203 ◽  
pp. 171-175
Author(s):  
Wei Zheng Zhang ◽  
Xiao Liu ◽  
Chang Hu Xiang

The turbulent flow in the near-wall region affects the wall heat transfer dominantly. The farther it is from the wall, the less effect it has. So a two-step mechanism of the turbulent wall heat transfer is released: first, the energy is transferred to the outside of the viscous sub-layer by the rolling of the micro-eddy; secondly, the energy gets to the wall by conduction. Then, a theoretical model of wall heat transfer is developed with this concept. The constant in the model is confirmed by experiment and simulation of the transient turbulent heat transfer in pipe flow. Finally, the model is used to predict the local heat flux under different conditions, and the results agree well with the experimental results as well as the simulation results.


Sign in / Sign up

Export Citation Format

Share Document