Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second-order nonlinear medium

1998 ◽  
Vol 34 (6) ◽  
pp. 966-974 ◽  
Author(s):  
Y.J. Ding ◽  
J.U. Kang ◽  
J.B. Khurgin
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3194
Author(s):  
Adrian Petris ◽  
Petronela Gheorghe ◽  
Tudor Braniste ◽  
Ion Tiginyanu

The ultrafast third-order optical nonlinearity of c-plane GaN crystal, excited by ultrashort (fs) high-repetition-rate laser pulses at 1550 nm, wavelength important for optical communications, is investigated for the first time by optical third-harmonic generation in non-phase-matching conditions. As the thermo-optic effect that can arise in the sample by cumulative thermal effects induced by high-repetition-rate laser pulses cannot be responsible for the third-harmonic generation, the ultrafast nonlinear optical effect of solely electronic origin is the only one involved in this process. The third-order nonlinear optical susceptibility of GaN crystal responsible for the third-harmonic generation process, an important indicative parameter for the potential use of this material in ultrafast photonic functionalities, is determined.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Marwan Abdou Ahmed ◽  
Christoph Roecker ◽  
André Loescher ◽  
Florian Bienert ◽  
Daniel Holder ◽  
...  

Abstract Thin-disk multipass amplifiers represent one of the most powerful approaches to scale the average and peak powers of ultrafast laser systems. The present paper presents the amplification of picosecond and femtosecond pulses to average powers exceeding 2 and 1 kW, respectively. Second-harmonic generation in lithium-triborate crystals with powers higher than 1.4 kW and 400 W at a wavelength of 515 nm with picosecond and femtosecond pulse durations, respectively, are also reported. Furthermore, third-harmonic generation was demonstrated with output powers exceeding 250 W at a wavelength of 343 nm. Finally, processing of silicon, metals, and polycrystalline diamond with fs pulses at an average power of 1 kW is presented to demonstrate removal rates that are improved by orders of magnitude as compared to state-of-the-art techniques.


Sign in / Sign up

Export Citation Format

Share Document