photonic crystal slabs
Recently Published Documents


TOTAL DOCUMENTS

460
(FIVE YEARS 50)

H-INDEX

48
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Mingsen Pan ◽  
Zhonghe Liu ◽  
Akhil Raj Kumar Kalapala ◽  
yudong chen ◽  
Yuze Sun ◽  
...  

Author(s):  
Ludovica Tognolatti ◽  
Paolo Baccarelli ◽  
Vakhtang Jandieri ◽  
Silvio Ceccuzzi ◽  
Cristina Ponti ◽  
...  

2021 ◽  
Author(s):  
Zhonghe Liu ◽  
Michael Vasilyev ◽  
Mingsen Pan ◽  
Yuze Sun ◽  
Cheng Guo ◽  
...  

Plasmonics ◽  
2021 ◽  
Author(s):  
Suxia Xie ◽  
Song Xie ◽  
Zhijian Li ◽  
Guang Tian ◽  
Jie Zhan ◽  
...  

2021 ◽  
Vol 23 (9) ◽  
pp. 093026
Author(s):  
Lu He ◽  
Huizhen Zhang ◽  
Weixuan Zhang ◽  
Yujing Wang ◽  
Xiangdong Zhang

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5420
Author(s):  
Simeon Trendafilov ◽  
Jeffery W. Allen ◽  
Monica S. Allen ◽  
Sukrith U. Dev ◽  
Ziyuan Li ◽  
...  

Semiconductor nanowire arrays have been demonstrated as promising candidates for nanoscale optoelectronics applications due to their high detectivity as well as tunable photoresponse and bandgap over a wide spectral range. In the infrared (IR), where these attributes are more difficult to obtain, nanowires will play a major role in developing practical devices for detection, imaging and energy harvesting. Due to their geometry and periodic nature, vertical nanowire and nanopillar devices naturally lend themselves to waveguide and photonic crystal mode engineering leading to multifunctional materials and devices. In this paper, we computationally develop theoretical basis to enable better understanding of the fundamental electromagnetics, modes and couplings that govern these structures. Tuning the photonic response of a nanowire array is contingent on manipulating electromagnetic power flow through the lossy nanowires, which requires an intimate knowledge of the photonic crystal modes responsible for the power flow. Prior published work on establishing the fundamental physical modes involved has been based either on the modes of individual nanowires or numerically computed modes of 2D photonic crystals. We show that a unified description of the array key electromagnetic modes and their behavior is obtainable by taking into account modal interactions that are governed by the physics of exceptional points. Such models that describe the underlying physics of the photoresponse of nanowire arrays will facilitate the design and optimization of ensembles with requisite performance. Since nanowire arrays represent photonic crystal slabs, the essence of our results is applicable to arbitrary lossy photonic crystals in any frequency range.


2021 ◽  
Author(s):  
Zhaojian Zhang ◽  
Jian Wei You ◽  
Zhihao Lan ◽  
Nicolae C Panoiu

Sign in / Sign up

Export Citation Format

Share Document