A computationally efficient thermal model of cylindrical battery cells for the estimation of radially distributed temperatures

Author(s):  
Youngki Kim ◽  
Jason B. Siegel ◽  
Anna G. Stefanopoulou
2019 ◽  
Vol 166 (13) ◽  
pp. A3059-A3071 ◽  
Author(s):  
Ngoc Tham Tran ◽  
Troy Farrell ◽  
Mahinda Vilathgamuwa ◽  
San Shing Choi ◽  
Yang Li

2013 ◽  
Vol 401-403 ◽  
pp. 450-455
Author(s):  
Gaoussou Hadia Fofana ◽  
You Tong Zhang

Abstract. The paper has built 3D-FEA models to simulate the electro-thermal behavior of Li-ion battery cells with Pouch Cell and Prismatic Cell by ANSYS. As for two models, the Li-ion battery system is simplified as a single equivalent battery layer (Pouch Cell) or multiple equivalent battery layers (Prismatic Cell) with the equivalent electrodes and separator. They were simulated under air cooling conditions. Simulations were compared with available battery temperature measurements. This shows that the 3D electro-thermal model applied in this study characterizes the electro-thermal behavior of the Li-ion battery cells reasonably well.


Author(s):  
S. Dey ◽  
B. Ayalew ◽  
P. Pisu

Real-time estimation of battery internal states and physical parameters is of the utmost importance for intelligent battery management systems (BMS). Electrochemical models, derived from the principles of electrochemistry, are arguably more accurate in capturing the physical mechanism of the battery cells than their counterpart data-driven or equivalent circuit models (ECM). Moreover, the electrochemical phenomena inside the battery cells are coupled with the thermal dynamics of the cells. Therefore, consideration of the coupling between electrochemical and thermal dynamics inside the battery cell can be potentially advantageous for improving the accuracy of the estimation. In this paper, a nonlinear adaptive observer scheme is developed based on a coupled electrochemical–thermal model of a Li-ion battery cell. The proposed adaptive observer scheme estimates the distributed Li-ion concentration and temperature states inside the electrode, and some of the electrochemical model parameters, simultaneously. These states and parameters determine the state of charge (SOC) and state of health (SOH) of the battery cell. The adaptive scheme is split into two separate but coupled observers, which simplifies the design and gain tuning procedures. The design relies on a Lyapunov's stability analysis of the observers, which guarantees the convergence of the combined state-parameter estimates. To validate the effectiveness of the scheme, both simulation and experimental studies are performed. The results show that the adaptive scheme is able to estimate the desired variables with reasonable accuracy. Finally, some scenarios are described where the performance of the scheme degrades.


2018 ◽  
Vol 143 ◽  
pp. 472-481 ◽  
Author(s):  
Walid Allafi ◽  
Cheng Zhang ◽  
Kotub Uddin ◽  
Daniel Worwood ◽  
Truong Quang Dinh ◽  
...  

Author(s):  
Jacob A. Kerkhoff ◽  
Michael J. Wagner

Abstract This paper presents advances to a thermal model for a cavity-type receiver that will be integrated into NREL’s System Advisor Model (SAM) software. Traditional concentrated solar power towers make use of an external cylindrical receiver where all active surfaces are fully exposed to the environment, resulting in significant convective and radiative losses. Cavity-type receivers promise to mitigate these losses by instead accepting solar flux through an aperture. In order to allow detailed resolution of the temperature distribution across the cavity, it is necessary to create refined meshes for different cavity geometries and determine the view factor accurately and quickly between any two elements in the mesh. To accomplish this, an analytical function is written to precisely calculate view factors between arbitrary planar polygons without requiring the use of computationally expensive Monte Carlo ray tracing. These view factors are modified using the F-hat method and used as the basis for a two-band radiation heat transfer model. Heat transfer fluid routing is handled through an elemental connectivity matrix, which specifies the elemental fluid temperature variation from inlet to outlet and allows the cavity mesh to interact with the fluid elements. The model is solved iteratively for panel and then fluid temperatures in order to account simultaneously for all energy transfers (convective, long wavelength, short wavelength, and fluid). This approach offers a computationally efficient but still detailed simulation of cavity receiver configurations making it suitable for use in an annual-hourly time series simulation tool such as SAM.


Sign in / Sign up

Export Citation Format

Share Document