scholarly journals Knowledge Graph-Based Image Classification Refinement

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 57678-57690 ◽  
Author(s):  
Dehai Zhang ◽  
Menglong Cui ◽  
Yun Yang ◽  
Po Yang ◽  
Cheng Xie ◽  
...  
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yang He ◽  
Ling Tian ◽  
Lizong Zhang ◽  
Xi Zeng

Autonomous object detection powered by cutting-edge artificial intelligent techniques has been an essential component for sustaining complex smart city systems. Fine-grained image classification focuses on recognizing subcategories of specific levels of images. As a result of the high similarity between images in the same category and the high dissimilarity in the same subcategories, it has always been a challenging problem in computer vision. Traditional approaches usually rely on exploring only the visual information in images. Therefore, this paper proposes a novel Knowledge Graph Representation Fusion (KGRF) framework to introduce prior knowledge into fine-grained image classification task. Specifically, the Graph Attention Network (GAT) is employed to learn the knowledge representation from the constructed knowledge graph modeling the categories-subcategories and subcategories-attributes associations. By introducing the Multimodal Compact Bilinear (MCB) module, the framework can fully integrate the knowledge representation and visual features for learning the high-level image features. Extensive experiments on the Caltech-UCSD Birds-200-2011 dataset verify the superiority of our proposed framework over several existing state-of-the-art methods.


2020 ◽  
Vol 79 (9) ◽  
pp. 781-791
Author(s):  
V. О. Gorokhovatskyi ◽  
I. S. Tvoroshenko ◽  
N. V. Vlasenko

2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


PIERS Online ◽  
2007 ◽  
Vol 3 (5) ◽  
pp. 625-628
Author(s):  
Jian Yang ◽  
Xiaoli She ◽  
Tao Xiong

Sign in / Sign up

Export Citation Format

Share Document