scholarly journals Optimizing Size of Variable Renewable Energy Sources by Incorporating Energy Storage and Demand Response

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 103115-103126 ◽  
Author(s):  
Muhammad Faizan Tahir ◽  
Chen Haoyong ◽  
Asad Khan ◽  
Muhammad Sufyan Javed ◽  
Nauman Ali Laraik ◽  
...  
2016 ◽  
Vol 163 ◽  
pp. 93-104 ◽  
Author(s):  
Christos D. Korkas ◽  
Simone Baldi ◽  
Iakovos Michailidis ◽  
Elias B. Kosmatopoulos

Author(s):  
V. V. S. N. Murty ◽  
Ashwani Kumar

AbstractMicrogrid with hybrid renewable energy sources is a promising solution where the distribution network expansion is unfeasible or not economical. Integration of renewable energy sources provides energy security, substantial cost savings and reduction in greenhouse gas emissions, enabling nation to meet emission targets. Microgrid energy management is a challenging task for microgrid operator (MGO) for optimal energy utilization in microgrid with penetration of renewable energy sources, energy storage devices and demand response. In this paper, optimal energy dispatch strategy is established for grid connected and standalone microgrids integrated with photovoltaic (PV), wind turbine (WT), fuel cell (FC), micro turbine (MT), diesel generator (DG) and battery energy storage system (ESS). Techno-economic benefits are demonstrated for the hybrid power system. So far, microgrid energy management problem has been addressed with the aim of minimizing operating cost only. However, the issues of power losses and environment i.e., emission-related objectives need to be addressed for effective energy management of microgrid system. In this paper, microgrid energy management (MGEM) is formulated as mixed-integer linear programming and a new multi-objective solution is proposed for MGEM along with demand response program. Demand response is included in the optimization problem to demonstrate it’s impact on optimal energy dispatch and techno-commercial benefits. Fuzzy interface has been developed for optimal scheduling of ESS. Simulation results are obtained for the optimal capacity of PV, WT, DG, MT, FC, converter, BES, charging/discharging scheduling, state of charge of battery, power exchange with grid, annual net present cost, cost of energy, initial cost, operational cost, fuel cost and penalty of greenhouse gases emissions. The results show that CO2 emissions in standalone hybrid microgrid system is reduced by 51.60% compared to traditional system with grid only. Simulation results obtained with the proposed method is compared with various evolutionary algorithms to verify it’s effectiveness.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Sign in / Sign up

Export Citation Format

Share Document