Quantifying the Flexibility by Energy Storage Systems in Distribution Networks with Large-Scale Variable Renewable Energy Sources

Author(s):  
Marco R. M. Cruz ◽  
Desta Z. Fitiwi ◽  
Sergio F. Santos ◽  
Joao P. S. Catalao
2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3296
Author(s):  
Carlos García-Santacruz ◽  
Luis Galván ◽  
Juan M. Carrasco ◽  
Eduardo Galván

Energy storage systems are expected to play a fundamental part in the integration of increasing renewable energy sources into the electric system. They are already used in power plants for different purposes, such as absorbing the effect of intermittent energy sources or providing ancillary services. For this reason, it is imperative to research managing and sizing methods that make power plants with storage viable and profitable projects. In this paper, a managing method is presented, where particle swarm optimisation is used to reach maximum profits. This method is compared to expert systems, proving that the former achieves better results, while respecting similar rules. The paper further presents a sizing method which uses the previous one to make the power plant as profitable as possible. Finally, both methods are tested through simulations to show their potential.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 317 ◽  
Author(s):  
Jagdesh Kumar ◽  
Chethan Parthasarathy ◽  
Mikko Västi ◽  
Hannu Laaksonen ◽  
Miadreza Shafie-Khah ◽  
...  

The stringent emission rules set by international maritime organisation and European Directives force ships and harbours to constrain their environmental pollution within certain targets and enable them to employ renewable energy sources. To this end, harbour grids are shifting towards renewable energy sources to cope with the growing demand for an onshore power supply and battery-charging stations for modern ships. However, it is necessary to accurately size and locate battery energy storage systems for any operational harbour grid to compensate the fluctuating power supply from renewable energy sources as well as meet the predicted maximum load demand without expanding the power capacities of transmission lines. In this paper, the equivalent circuit battery model of nickel–cobalt–manganese-oxide chemistry has been utilised for the sizing of a lithium-ion battery energy storage system, considering all the parameters affecting its performance. A battery cell model has been developed in the Matlab/Simulink platform, and subsequently an algorithm has been developed for the design of an appropriate size of lithium-ion battery energy storage systems. The developed algorithm has been applied by considering real data of a harbour grid in the Åland Islands, and the simulation results validate that the sizes and locations of battery energy storage systems are accurate enough for the harbour grid in the Åland Islands to meet the predicted maximum load demand of multiple new electric ferry charging stations for the years 2022 and 2030. Moreover, integrating battery energy storage systems with renewables helps to increase the reliability and defer capital cost investments of upgrading the ratings of transmission lines and other electrical equipment in the Åland Islands grid.


Sign in / Sign up

Export Citation Format

Share Document