scholarly journals Movements and Balance Control of a Wheel-Leg Robot Based on Uncertainty and Disturbance Estimation Method

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 133265-133273 ◽  
Author(s):  
Yaxian Xin ◽  
Xuewen Rong ◽  
Yibin Li ◽  
Bin Li ◽  
Hui Chai
PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257849
Author(s):  
Muhammad Wasim ◽  
Ahsan Ali ◽  
Mohammad Ahmad Choudhry ◽  
Faisal Saleem ◽  
Inam Ul Hasan Shaikh ◽  
...  

An airship is lighter than an air vehicle with enormous potential in applications such as communication, aerial inspection, border surveillance, and precision agriculture. An airship model is made up of dynamic, aerodynamic, aerostatic, and propulsive forces. However, the computation of aerodynamic forces remained a challenge. In addition to aerodynamic model deficiencies, airship mass matrix suffers from parameter variations. Moreover, due to the lighter-than-air nature, it is also susceptible to wind disturbances. These modeling issues are the key challenges in developing an efficient autonomous flight controller for an airship. This article proposes a unified estimation method for airship states, model uncertainties, and wind disturbance estimation using Unscented Kalman Filter (UKF). The proposed method is based on a lumped model uncertainty vector that unifies model uncertainties and wind disturbances in a single vector. The airship model is extended by incorporating six auxiliary state variables into the lumped model uncertainty vector. The performance of the proposed methodology is evaluated using a nonlinear simulation model of a custom-developed UETT airship and is validated by conducting a kind of error analysis. For comparative studies, EKF estimator is also developed. The results show the performance superiority of the proposed estimator over EKF; however, the proposed estimator is a bit expensive on computational grounds. However, as per the requirements of the current application, the proposed estimator can be a preferred choice.


2021 ◽  
Vol 101 (3) ◽  
Author(s):  
Dinesh D. Dhadekar ◽  
Prithvi D. Sanghani ◽  
K. K. Mangrulkar ◽  
S. E. Talole

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hongsheng Sha ◽  
Guijuan Wang ◽  
Tao Hao ◽  
Zuoxun Wang

This paper mainly investigates the projection synchronization of complex chaotic systems with both uncertainty and disturbance. Using the linear feedback method and the uncertainty and disturbance estimation- (UDE-) based control method, the projection synchronization of such systems is realized by two steps. In the first step, a linear feedback controller is designed to control the nominal complex chaotic systems to achieve projection synchronization. An UDE-based controller is proposed to estimate the whole of uncertainty and disturbance in the second step. Finally, numerical simulations verify the feasibility and effectiveness of the control method.


Sign in / Sign up

Export Citation Format

Share Document