scholarly journals TSIA: A Novel Image Authentication Scheme for AMBTC-Based Compressed Images Using Turtle Shell Based Reference Matrix

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 149515-149526 ◽  
Author(s):  
Chih-Cheng Chen ◽  
Chin-Chen Chang ◽  
Chia-Chen Lin ◽  
Guo-Dong Su
2013 ◽  
Vol 21 (1) ◽  
Author(s):  
Y. Hu ◽  
W. Chen ◽  
C. Lo ◽  
C. Wu

AbstractA novel image authentication scheme for the compressed images of block truncation coding (BTC) is proposed in this paper. In the proposed scheme, 1-bit authentication data is generated from the quantization levels of each image block. Multiple block permutations are generated by using the random sequences induced by the selected random number seeds. Multiple copies of the authenticaiton data are embedded into the bit maps of BTC-compressed image blocks based on the block permutations. Experimental results show that the proposed scheme achieves good detecting accuracy while keeping good image quatiy of the embedded image.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 996 ◽  
Author(s):  
Su ◽  
Chang ◽  
Lin

In this paper, a high-precision image authentication scheme for absolute moment block truncation coding (AMBTC)-compressed images is presented. For each block, two sub-bitmaps are conducted using the symmetrical separation, and the six-bit authentication code is symmetrically assigned to two sub-codes, which is virtually embedded into sub-bitmaps using the matrix encoding later. To overcome distortion caused by modifications to the bitmap, the corresponding to-be-flipped bit-location information is recorded instead of flipping these bits of the bitmap directly. Then, the bit-location information is inserted into quantization levels based on adjusted quantization level matching. In contrast to previous studies, the proposed scheme offers a significantly improved tampering detection ability, especially in the first hierarchical tampering detection without remediation measures, with an average tampering detection rate of up to 98.55%. Experimental results show that our approach provides a more stable and reliable tampering detection performance and sustains an acceptable visual quality.


2014 ◽  
Vol 6 (3) ◽  
pp. 30-46
Author(s):  
Jia-Hong Li ◽  
Tzung-Her Chen ◽  
Wei-Bin Lee

Image authentication must be able to verify the origin and the integrity of digital images, and some research has made efforts in that. In this paper, we reveal a new type of malicious alteration which we call the “Tattooing Attack”. It can successfully alter the protected image if the collision of the authentication bits corresponding to the altered image and the original watermarking image can be found. To make our point, we chose Chang et al.'s image authentication scheme based on watermarking techniques for tampering detection as an example. The authors will analyze the reasons why the attack is successful, and then they delineate the conditions making the attack possible. Since the result can be generally applied into other schemes, the authors evaluate such schemes to examine the soundness of these conditions. Finally, a solution is provided for all tamper detection schemes suffering from the Tattooing Attack.


2011 ◽  
Vol 34 (5) ◽  
pp. 1557-1565 ◽  
Author(s):  
Guangjie Liu ◽  
Junwen Wang ◽  
Shiguo Lian ◽  
Zhiquan Wang

Sign in / Sign up

Export Citation Format

Share Document