scholarly journals Optimal Path-Planning of Nonholonomic Terrain Robots for Dynamic Obstacle Avoidance Using Single-Time Velocity Estimator and Reinforcement Learning Approach

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 159347-159356
Author(s):  
Hamid Taghavifar ◽  
Bin Xu ◽  
Leyla Taghavifar ◽  
Yechen Qin
2019 ◽  
Vol 73 (2) ◽  
pp. 485-508
Author(s):  
Naifeng Wen ◽  
Rubo Zhang ◽  
Guanqun Liu ◽  
Junwei Wu

This paper attempts to solve a challenge in online relative optimal path planning of unmanned surface vehicles (USVs) caused by current and wave disturbance in the practical marine environment. The asymptotically optimal rapidly extending random tree (RRT*) method for local path optimisation is improved. Based on that, an online path planning (OPP) scheme is proposed according to the USV's kinematic and dynamic model. The execution efficiency of RRT* is improved by reduction of the sampling space that is used for randomly learning environmental knowledge. A heuristic sampling scheme is proposed based on the proportional navigation guidance (PNG) method that is used to enable the OPP procedure to utilise the reference information of the global path. Meanwhile, PNG is used to guide RRT* in generating feasible paths with a small amount of gentle turns. The dynamic obstacle avoidance problem is also investigated based on the International Regulations for Preventing Collisions at Sea. Case studies demonstrate that the proposed method efficiently plans paths that are relatively easier to execute and lower in fuel expenditure than traditional schemes. The dynamic obstacle avoidance ability of the proposed scheme is also attested.


2021 ◽  
pp. 1-18
Author(s):  
R.U. Hameed ◽  
A. Maqsood ◽  
A.J. Hashmi ◽  
M.T. Saeed ◽  
R. Riaz

Abstract This paper discusses the utilisation of deep reinforcement learning algorithms to obtain optimal paths for an aircraft to avoid or minimise radar detection and tracking. A modular approach is adopted to formulate the problem, including the aircraft kinematics model, aircraft radar cross-section model and radar tracking model. A virtual environment is designed for single and multiple radar cases to obtain optimal paths. The optimal trajectories are generated through deep reinforcement learning in this study. Specifically, three algorithms, namely deep deterministic policy gradient, trust region policy optimisation and proximal policy optimisation, are used to find optimal paths for five test cases. The comparison is carried out based on six performance indicators. The investigation proves the importance of these reinforcement learning algorithms in optimal path planning. The results indicate that the proximal policy optimisation approach performed better for optimal paths in general.


2021 ◽  
Vol 33 (7) ◽  
pp. 1102-1112
Author(s):  
Junxiao Xue ◽  
Xiangyan Kong ◽  
Yibo Guo ◽  
Aiguo Lu ◽  
Jian Li ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianjun Ni ◽  
Wenbo Wu ◽  
Jinrong Shen ◽  
Xinnan Fan

Robot path planning in unknown and dynamic environments is one of the hot topics in the field of robot control. The virtual force field (VFF) is an efficient path planning method for robot. However, there are some shortcomings of the traditional VFF based methods, such as the local minimum problem and the higher computational complexity, in dealing with the dynamic obstacle avoidance. In this paper, an improved VFF approach is proposed for the real-time robot path planning, where the environment is unknown and changing. An area ratio parameter is introduced into the proposed VFF based approach, where the size of the robot and obstacles are considered. Furthermore, a fuzzy control module is added, to deal with the problem of obstacle avoidance in dynamic environments, by adjusting the rotation angle of the robot. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document