local minimum problem
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 2)

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1898 ◽  
Author(s):  
Rae-Kyun Kim ◽  
Mark B. Glick ◽  
Keith R. Olson ◽  
Yun-Su Kim

This paper presents the optimal scheduling of a diesel generator and an energy storage system (ESS) while using a detailed battery ESS energy efficiency model. Optimal scheduling has been hampered to date by the nonlinearity and complexity of the battery ESS. This is due to the battery ESS efficiency being a multiplication of inverter and battery efficiency and the dependency of an inverter and any associated battery efficiencies on load and charging and discharging. We propose a combined mixed-integer linear programming and particle swarm optimization (MILP-PSO) algorithm as a novel means of addressing these considerations. In the algorithm, MILP is used to find some initial points of PSO, so that it can find better solution. Moreover, some additional algorithms are added into PSO to modify and, hence, improve its ability of dealing with constraint conditions and the local minimum problem. The simulation results show that the proposed algorithm performs better than MILP and PSO alone for the practical microgrid. The results also indicated that simplification or neglect of ESS efficiency when applying MILP to scheduling may cause a constraint violation.


2019 ◽  
Vol 9 (8) ◽  
pp. 1589 ◽  
Author(s):  
Jiubo Sun ◽  
Guoliang Liu ◽  
Guohui Tian ◽  
Jianhua Zhang

The artificial potential field approach provides a simple and effective motion planner for robot navigation. However, the traditional artificial potential field approach in practice can have a local minimum problem, i.e., the attractive force from the target position is in the balance with the repulsive force from the obstacle, such that the robot cannot escape from this situation and reach the target. Moreover, the moving object detection and avoidance is still a challenging problem with the current artificial potential field method. In this paper, we present an improved version of the artificial potential field method, which uses a dynamic window approach to solve the local minimum problem and define a danger index in the speed field for moving object avoidance. The new danger index considers not only the relative distance between the robot and the obstacle, but also the relative velocity according to the motion of the moving objects. In this way, the robot can find an optimized path to avoid local minimum and moving obstacles, which is proved by our experimental results.


2018 ◽  
Vol 14 (3) ◽  
pp. 129-140
Author(s):  
Khulood E. Dagher

This paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performance and achieve the desired output. In addition, there is a minimization for the tracking voltage error to zero value of the Buck converter output, especially when changing a load resistance by 10%.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianjun Ni ◽  
Wenbo Wu ◽  
Jinrong Shen ◽  
Xinnan Fan

Robot path planning in unknown and dynamic environments is one of the hot topics in the field of robot control. The virtual force field (VFF) is an efficient path planning method for robot. However, there are some shortcomings of the traditional VFF based methods, such as the local minimum problem and the higher computational complexity, in dealing with the dynamic obstacle avoidance. In this paper, an improved VFF approach is proposed for the real-time robot path planning, where the environment is unknown and changing. An area ratio parameter is introduced into the proposed VFF based approach, where the size of the robot and obstacles are considered. Furthermore, a fuzzy control module is added, to deal with the problem of obstacle avoidance in dynamic environments, by adjusting the rotation angle of the robot. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.


2013 ◽  
Vol 380-384 ◽  
pp. 1414-1417
Author(s):  
Fei Long Li

This paper presents an evolutionary way for the robot to plan path. The way is based on the Evolutionary Artificial Potential Field approach. APF is an efficient way for a robot to plan its path, and the evolutionary APF can help the robot to jump out of the local minimum point. A matrix is integrated in the new algorithm. The matrix can modify the direction of a robot when the robot is trapped in a local minimum point. The force which has been changed will prompt the robot to escape from the local minimum point. Simulation result shows that the optimized algorithm is an effective way to solve the local minimum problem.


Sign in / Sign up

Export Citation Format

Share Document