scholarly journals Dynamic Arc Current Distribution of Parallel Vacuum Arcs Subjected to Bipolar Axial Magnetic Field

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 58290-58299
Author(s):  
Haomin Li ◽  
Zihan Wang ◽  
Yingsan Geng ◽  
Zhiyuan Liu ◽  
Jianhua Wang
1972 ◽  
Vol 27 (4) ◽  
pp. 652-670
Author(s):  
O. Klüber

Abstract In an arc with superimposed axial magnetic field, radial current components cause a rotational motion of the plasma column and produce azimuthal Hall currents and hence electromotive forces such that the arc current is guided by the magnetic field lines. In the first part of this paper the steady-state plasma equations have been solved for a homogeneous plasma in simple geometry, allowance being made for finite viscosity. Here, scaling laws giving the radial extent of the arc current are obtained. In addition, electrodes with finite cross sections are treated. The results of model calculations agree well with experimental data. Generally, the model is applicable, if the angular frequency of the plasma is small compared with the ion gyration frequency.


2017 ◽  
Vol 4 (1) ◽  
pp. 99-103
Author(s):  
B. Tezenas du Montcel ◽  
P. Chapelle ◽  
A. Jardy ◽  
C. Creusot

The distribution of cathode spots in a CuCr25 vacuum arc controlled by an axial magnetic field and ignited on the lateral surface of the cathode is investigated for long gap distances, from the processing of high-speed video images. The processing method includes also estimating the current carried by a single spot and reconstructing the distribution of the current density at the cathode. Various distributions depending partly on the arc current are described.


1970 ◽  
Vol 25 (11) ◽  
pp. 1583-1600
Author(s):  
O. Klüber

Abstract In an arc without external magnetic field the current carrying region is identical with the conducting plasma column. This is no longer generally true if the arc is in an axial magnetic field and if the electrode radius is much smaller than the plasma radius. Radial current components then produce a rotational motion of the plasma and an azimuthal Hall current, and hence electromotive forces which try to suppress the current perpendicular to the magnetic field. In a plasma with finite viscosity the rotation is determined by the Navier-Stokes equation, which is solved here for a homogeneous plasma simultaneously with generalized Ohm's law. The results show that the plasma rotation is always an essential, and often the dominant, mechanism for guiding the arc current parallel to the magnetic field lines.


2019 ◽  
Vol 122 (4) ◽  
Author(s):  
D. Mikitchuk ◽  
M. Cvejić ◽  
R. Doron ◽  
E. Kroupp ◽  
C. Stollberg ◽  
...  

2016 ◽  
Vol 23 (9) ◽  
pp. 093507 ◽  
Author(s):  
Hui Ma ◽  
Yingsan Geng ◽  
Zhiyuan Liu ◽  
Jianhua Wang ◽  
Zhenxing Wang ◽  
...  

Author(s):  
J. Wolowski ◽  
J. Badziak ◽  
P. Parys ◽  
E. Woryna ◽  
J. Krasa ◽  
...  

Author(s):  
Le Sun ◽  
Zhejun Luo ◽  
Jun Hang ◽  
Shichuan Ding ◽  
Wei Wang

2021 ◽  
Vol 76 (3) ◽  
pp. 265-283
Author(s):  
G. Nath

Abstract The approximate analytical solution for the propagation of gas ionizing cylindrical blast (shock) wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field is investigated. The axial and azimuthal components of fluid velocity are taken into consideration and these flow variables, magnetic field in the ambient medium are assumed to be varying according to the power laws with distance from the axis of symmetry. The shock is supposed to be strong one for the ratio C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ to be a negligible small quantity, where C 0 is the sound velocity in undisturbed fluid and V S is the shock velocity. In the undisturbed medium the density is assumed to be constant to obtain the similarity solution. The flow variables in power series of C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ are expanded to obtain the approximate analytical solutions. The first order and second order approximations to the solutions are discussed with the help of power series expansion. For the first order approximation the analytical solutions are derived. In the flow-field region behind the blast wave the distribution of the flow variables in the case of first order approximation is shown in graphs. It is observed that in the flow field region the quantity J 0 increases with an increase in the value of gas non-idealness parameter or Alfven-Mach number or rotational parameter. Hence, the non-idealness of the gas and the presence of rotation or magnetic field have decaying effect on shock wave.


Sign in / Sign up

Export Citation Format

Share Document