scholarly journals Unit Commitment Comprehensive Optimal Model Considering the Cost of Wind Power Curtailment and Deep Peak Regulation of Thermal Unit

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 71318-71325 ◽  
Author(s):  
Bin Yang ◽  
Xiangyang Cao ◽  
Zhenhua Cai ◽  
Tongguang Yang ◽  
Dawei Chen ◽  
...  
2013 ◽  
Vol 772 ◽  
pp. 705-710
Author(s):  
Li Wei Ju ◽  
Zhong Fu Tan ◽  
He Yin ◽  
Zhi Hong Chen

In order to be able to absorb the abandoned wind, increasing wind-connect amount, the paper study the way of wind power, thermal power joint run and puts forward wind power, thermal power joint run optimization model based on the energy-saving generation dispatching way under the environment of TOU price and the target of minimizing the cost of coal-fired cost, unit commitment and pollution emissions. The numerical example finds, the TOU price can realize the goal of peak load shifting, increasing the electricity demand in the low load and reducing electricity demand in the peak load. The model can increase the amount of wind-connect grid, absorb the abandoned wind, reduce the use of coal-fired units under the environment, increase the average electricity sales price and profit of Power Company. Therefore, the model has significant economical environmental benefits


2020 ◽  
Vol 12 (23) ◽  
pp. 10100
Author(s):  
Khalid Alqunun ◽  
Tawfik Guesmi ◽  
Abdullah F. Albaker ◽  
Mansoor T. Alturki

This paper presents a modified formulation for the wind-battery-thermal unit commitment problem that combines battery energy storage systems with thermal units to compensate for the power dispatch gap caused by the intermittency of wind power generation. The uncertainty of wind power is described by a chance constraint to escape the probabilistic infeasibility generated by classical approximations of wind power. Furthermore, a mixed-integer linear programming algorithm was applied to solve the unit commitment problem. The uncertainty of wind power was classified as a sub-problem and separately computed from the master problem of the mixed-integer linear programming. The master problem tracked and minimized the overall operation cost of the entire model. To ensure a feasible and efficient solution, the formulation of the wind-battery-thermal unit commitment problem was designed to gather all system operating constraints. The solution to the optimization problem was procured on a personal computer using a general algebraic modeling system. To assess the performance of the proposed model, a simulation study based on the ten-unit power system test was applied. The effects of battery energy storage and wind power were deeply explored and investigated throughout various case studies.


Author(s):  
S. Siva Sakthi ◽  
R.K. Santhi ◽  
N. Murali Krishnan ◽  
S. Ganesan ◽  
S. Subramanian

The augment of ecological shield and the progressive exhaustion of traditional fossil energy sources have increased the interests in integrating renewable energy sources into existing power system. Wind power is becoming worldwide a significant component of the power generation portfolio. Profuse literature have been reported for the thermal Unit Commitment (UC) solution. In this work, the UC problem has been formulated by integrating wind power generators along with thermal power system. The Wind Generator Integrated UC (WGIUC) problem is more complex in nature, that necessitates a promising optimization tool. Hence, the modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) algorithm has been chosen as the main optimization tool and real coded scheme has been incorporated to handle the operational constraints. The standard test systems are used to validate the potential of the GWO algorithm. Moreover, the ramp rate limits are also included in the mathematical WGIUC formulation. The simulation results prove that the intended algorithm has the capability of obtaining economical resolutions with good solution quality.


2020 ◽  
Vol 258 ◽  
pp. 114031
Author(s):  
Mohasha Isuru ◽  
Matthias Hotz ◽  
H.B. Gooi ◽  
Wolfgang Utschick

Sign in / Sign up

Export Citation Format

Share Document