scholarly journals Research on Position Servo System Based on Fractional-Order Extended State Observer

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 102748-102756
Author(s):  
Jiacai Huang ◽  
Peng Ma ◽  
Guangxuan Bao ◽  
Fangzheng Gao ◽  
Xinxin Shi
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Peng Gao ◽  
Guangming Zhang ◽  
Huimin Ouyang ◽  
Lei Mei

A novel sliding mode controller (SMC) with nonlinear fractional order PID sliding surface based on a novel extended state observer for the speed operation of a surface-mounted permanent magnet synchronous motor (SPMSM) is proposed in this paper. First, a new smooth and derivable nonlinear function with improved continuity and derivative is designed to replace the traditional nonderivable nonlinear function of the nonlinear state error feedback control law. Then, a nonlinear fractional order PID sliding mode controller is proposed on the basis of the fractional order PID sliding surface with the combination of the novel nonlinear state error feedback control law to improve dynamic performance, static performance, and robustness of the system. Furthermore, a novel extended state observer is designed based on the new nonlinear function to achieve dynamic feedback compensation for external disturbances. Stability of the system is proved based on the Lyapunov stability theorem. The corresponding comparative simulation results demonstrate that the proposed composite control algorithm displays good stability, dynamic properties, and strong robustness against external disturbances.


Author(s):  
Rachid Mansouri ◽  
Maamar Bettayeb ◽  
Ubaid M Al-Saggaf ◽  
Abdulrahman U Alsaggaf ◽  
Muhammad Moinuddin

In this paper, based on the extended state observer (ESO) and on a fractional order controller (FOC), composed of an integer order PID cascaded with a fractional order filter (FOF), a new control scheme for an n th order integer plant is proposed. The ESO is used to estimate and cancel the unknown internal dynamics and the external disturbance. Afterwards, an FOC is designed to resolve the set-point tracking problem. An analytical and systematic method is proposed to design the FOC. This method is based on the Internal Model Control (IMC) and the Bode’s Ideal Transfer Function (BITF). Therefore, the proposed control structure improves the robustness and performance of the traditional linear active disturbance rejection control (LADRC), especially for the open-loop gain variation. In addition, since the system be controlled is an n th order, a general form of the BITF is also proposed. Numerical simulations on a nonlinear model and experimental results on a cart-pendulum system design illustrate the effectiveness of the suggested ESO-PID-FOF scheme for the disturbance rejection, the set-point tracking and robustness. A comparison with the results obtained using the standard LADRC is also presented.


Sign in / Sign up

Export Citation Format

Share Document