pid sliding surface
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 93 (1) ◽  
pp. 218-226
Author(s):  
Tiger Yuan ◽  
Guanyou Guo ◽  
Baiyu Du ◽  
Zhiping Zhao ◽  
Weikai Xu

Purpose The purpose of this paper is to resolve the problem of the dynamic response performance of the driving control system for a six-wheeled planetary rover. An adaptive sliding mode controller based on an improved genetic algorithm (IGA) to tune PID sliding surface parameters was used in the driving control system of the planetary rover. Design/methodology/approach First, the mathematical model of planetary rover driving control is established. Second, according to sliding mode variable structure control, an equivalent controller and a disturbance controller are constructed to solve the problem of a multi-disturbance nonlinear driving control system of planetary rovers and an IGA is used to tune PID parameters. Findings Simulation results show that the proposed control algorithm improves the accuracy of the driving control system and optimizes the smoothness of rover motion control. Practical implications The controller based on the IGA to tune PID sliding surface parameters has good self-adaptability and real-time controllability for the control object which is difficult to present a precise mathematical model. Originality/value The advanced control method is adopted to solve the uncertainty and external interference of planetary rovers in a complex environment. The mathematical model of the six-wheeled rover is established as the control object and the uncertainty and external disturbance of the model are considered. The controller based on IGA has good adaptability and real-time performance and the control algorithm can be used to drive robots in complex environments.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Peng Gao ◽  
Guangming Zhang ◽  
Huimin Ouyang ◽  
Lei Mei

A novel sliding mode controller (SMC) with nonlinear fractional order PID sliding surface based on a novel extended state observer for the speed operation of a surface-mounted permanent magnet synchronous motor (SPMSM) is proposed in this paper. First, a new smooth and derivable nonlinear function with improved continuity and derivative is designed to replace the traditional nonderivable nonlinear function of the nonlinear state error feedback control law. Then, a nonlinear fractional order PID sliding mode controller is proposed on the basis of the fractional order PID sliding surface with the combination of the novel nonlinear state error feedback control law to improve dynamic performance, static performance, and robustness of the system. Furthermore, a novel extended state observer is designed based on the new nonlinear function to achieve dynamic feedback compensation for external disturbances. Stability of the system is proved based on the Lyapunov stability theorem. The corresponding comparative simulation results demonstrate that the proposed composite control algorithm displays good stability, dynamic properties, and strong robustness against external disturbances.


Sign in / Sign up

Export Citation Format

Share Document