scholarly journals Efficient Access Control of Large Scale RDF Data Using Prefix-Based Labeling

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 122405-122412 ◽  
Author(s):  
Jinhyun Ahn ◽  
Dong-Hyuk Im
1991 ◽  
Vol 14 (3) ◽  
pp. 319-324
Author(s):  
Chu‐Hsing Lin ◽  
Chin‐Chen Chang ◽  
Richard Char‐Tung Lee

2013 ◽  
Vol 441 ◽  
pp. 691-694
Author(s):  
Yi Qun Zeng ◽  
Jing Bin Wang

With the rapid development of information technology, data grows explosionly, how to deal with the large scale data become more and more important. Based on the characteristics of RDF data, we propose to compress RDF data. We construct an index structure called PAR-Tree Index, then base on the MapReduce parallel computing framework and the PAR-Tree Index to execute the query. Experimental results show that the algorithm can improve the efficiency of large data query.


2017 ◽  
Vol 44 (2) ◽  
pp. 203-229 ◽  
Author(s):  
Javier D Fernández ◽  
Miguel A Martínez-Prieto ◽  
Pablo de la Fuente Redondo ◽  
Claudio Gutiérrez

The publication of semantic web data, commonly represented in Resource Description Framework (RDF), has experienced outstanding growth over the last few years. Data from all fields of knowledge are shared publicly and interconnected in active initiatives such as Linked Open Data. However, despite the increasing availability of applications managing large-scale RDF information such as RDF stores and reasoning tools, little attention has been given to the structural features emerging in real-world RDF data. Our work addresses this issue by proposing specific metrics to characterise RDF data. We specifically focus on revealing the redundancy of each data set, as well as common structural patterns. We evaluate the proposed metrics on several data sets, which cover a wide range of designs and models. Our findings provide a basis for more efficient RDF data structures, indexes and compressors.


Sign in / Sign up

Export Citation Format

Share Document