scholarly journals MIMO Radar Imaging With Multiple Probing Pulses for 2D Off-Grid Targets via Variational Sparse Bayesian Learning

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 147591-147603
Author(s):  
Chao Wen ◽  
Lu Chen ◽  
Pengting Duan ◽  
Xuefeng Cui
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hanwei Liu ◽  
Yongshun Zhang ◽  
Yiduo Guo ◽  
Qiang Wang ◽  
Yifeng Wu

In a heterogeneous environment, to efficiently suppress clutter with only one snapshot, a novel STAP algorithm for multiple-input multiple-output (MIMO) radar based on sparse representation, referred to as MIMOSR-STAP in this paper, is presented. By exploiting the waveform diversity of MIMO radar, each snapshot at the tested range cell can be transformed into multisnapshots for the phased array radar, which can estimate the high-resolution space-time spectrum by using multiple measurement vectors (MMV) technique. The proposed approach is effective in estimating the spectrum by utilizing Temporally Correlated Multiple Sparse Bayesian Learning (TMSBL). In the sequel, the clutter covariance matrix (CCM) and the corresponding adaptive weight vector can be efficiently obtained. MIMOSR-STAP enjoys high accuracy and robustness so that it can achieve better performance of output signal-to-clutter-plus-noise ratio (SCNR) and minimum detectable velocity (MDV) than the single measurement vector sparse representation methods in the literature. Thus, MIMOSR-STAP can deal with badly inhomogeneous clutter scenario more effectively, especially suitable for insufficient independent and identically distributed (IID) samples environment.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 99907-99916 ◽  
Author(s):  
Tingting Liu ◽  
Fangqing Wen ◽  
Lei Zhang ◽  
Ke Wang

2018 ◽  
Vol 2018 (5) ◽  
pp. 268-273 ◽  
Author(s):  
Fangqing Wen ◽  
Dongmei Huang ◽  
Ke Wang ◽  
Lei Zhang

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Bin Sun ◽  
Haowen Chen ◽  
Xizhang Wei ◽  
Xiang Li

The target localization in distributed multiple-input multiple-output (MIMO) radar is a problem of great interest. This problem becomes more complicated for the case of multitarget where the measurement should be associated with the correct target. Sparse representation has been demonstrated to be a powerful framework for direct position determination (DPD) algorithms which avoid the association process. In this paper, we explore a novel sparsity-based DPD method to locate multiple targets using distributed MIMO radar. Since the sparse representation coefficients exhibit block sparsity, we use a block sparse Bayesian learning (BSBL) method to estimate the locations of multitarget, which has many advantages over existing block sparse model based algorithms. Experimental results illustrate that DPD using BSBL can achieve better localization accuracy and higher robustness against block coherence and compressed sensing (CS) than popular algorithms in most cases especially for dense targets case.


Sign in / Sign up

Export Citation Format

Share Document