scholarly journals A Novel STAP Algorithm for Airborne MIMO Radar Based on Temporally Correlated Multiple Sparse Bayesian Learning

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hanwei Liu ◽  
Yongshun Zhang ◽  
Yiduo Guo ◽  
Qiang Wang ◽  
Yifeng Wu

In a heterogeneous environment, to efficiently suppress clutter with only one snapshot, a novel STAP algorithm for multiple-input multiple-output (MIMO) radar based on sparse representation, referred to as MIMOSR-STAP in this paper, is presented. By exploiting the waveform diversity of MIMO radar, each snapshot at the tested range cell can be transformed into multisnapshots for the phased array radar, which can estimate the high-resolution space-time spectrum by using multiple measurement vectors (MMV) technique. The proposed approach is effective in estimating the spectrum by utilizing Temporally Correlated Multiple Sparse Bayesian Learning (TMSBL). In the sequel, the clutter covariance matrix (CCM) and the corresponding adaptive weight vector can be efficiently obtained. MIMOSR-STAP enjoys high accuracy and robustness so that it can achieve better performance of output signal-to-clutter-plus-noise ratio (SCNR) and minimum detectable velocity (MDV) than the single measurement vector sparse representation methods in the literature. Thus, MIMOSR-STAP can deal with badly inhomogeneous clutter scenario more effectively, especially suitable for insufficient independent and identically distributed (IID) samples environment.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Bin Sun ◽  
Haowen Chen ◽  
Xizhang Wei ◽  
Xiang Li

The target localization in distributed multiple-input multiple-output (MIMO) radar is a problem of great interest. This problem becomes more complicated for the case of multitarget where the measurement should be associated with the correct target. Sparse representation has been demonstrated to be a powerful framework for direct position determination (DPD) algorithms which avoid the association process. In this paper, we explore a novel sparsity-based DPD method to locate multiple targets using distributed MIMO radar. Since the sparse representation coefficients exhibit block sparsity, we use a block sparse Bayesian learning (BSBL) method to estimate the locations of multitarget, which has many advantages over existing block sparse model based algorithms. Experimental results illustrate that DPD using BSBL can achieve better localization accuracy and higher robustness against block coherence and compressed sensing (CS) than popular algorithms in most cases especially for dense targets case.


2021 ◽  
Vol 13 (13) ◽  
pp. 2553
Author(s):  
Qi Liu ◽  
Xianpeng Wang ◽  
Mengxing Huang ◽  
Xiang Lan ◽  
Lu Sun

Due to grid division, the existing target localization algorithms based on sparse signal recovery for the frequency diverse array multiple-input multiple-output (FDA-MIMO) radar not only suffer from high computational complexity but also encounter significant estimation performance degradation caused by off-grid gaps. To tackle the aforementioned problems, an effective off-grid Sparse Bayesian Learning (SBL) method is proposed in this paper, which enables the calculation the direction of arrival (DOA) and range estimates. First of all, the angle-dependent component is split by reconstructing the received data and contributes to immediately extract rough DOA estimates with the root SBL algorithm, which, subsequently, are utilized to obtain the paired rough range estimates. Furthermore, a discrete grid is constructed by the rough DOA and range estimates, and the 2D-SBL model is proposed to optimize the rough DOA and range estimates. Moreover, the expectation-maximization (EM) algorithm is utilized to update the grid points iteratively to further eliminate the errors caused by the off-grid model. Finally, theoretical analyses and numerical simulations illustrate the effectiveness and superiority of the proposed method.


The phased-MIMO radar technology is the combination of the phased array and the MIMO (Multiple Input Multiple Output) radar technique. This proposed new technique gives the benefits of MIMO radar without sacrificing the main benefits of phased-array radar, which is the gain in coherent processing on the emission side. The intention of the proposed technique is to divide the transmission network into a number of overlapping subnets. This means that each subnet is used to consistently transmit a waveform that is orthogonal to the waveforms transmitted by the other subnets. The MIMO technique applied to traditional phased array radar has been investigated and has yielded many advantages over the phased array radar system and the MIMO radar. A Coherent processing gain can be obtained by designing a weight vector for each subnet to form a beam in a particular direction in space. The proposed technique compared to the previous techniques, which was a phased array and a MIMO radar, is analytically demonstrated and simulated by MATLAB analysis of the corresponding beam patterns and of the overall beam patterns.


2021 ◽  
Vol 13 (15) ◽  
pp. 2964
Author(s):  
Fangqing Wen ◽  
Junpeng Shi ◽  
Xinhai Wang ◽  
Lin Wang

Ideal transmitting and receiving (Tx/Rx) array response is always desirable in multiple-input multiple-output (MIMO) radar. In practice, nevertheless, Tx/Rx arrays may be susceptible to unknown gain-phase errors (GPE) and yield seriously decreased positioning accuracy. This paper focuses on the direction-of-departure (DOD) and direction-of-arrival (DOA) problem in bistatic MIMO radar with unknown gain-phase errors (GPE). A novel parallel factor (PARAFAC) estimator is proposed. The factor matrices containing DOD and DOA are firstly obtained via PARAFAC decomposition. One DOD-DOA pair estimation is then accomplished from the spectrum searching. Thereafter, the remainder DOD and DOA are achieved by the least squares technique with the previous estimated angle pair. The proposed estimator is analyzed in detail. It only requires one instrumental Tx/Rx sensor, and it outperforms the state-of-the-art algorithms. Numerical simulations verify the theoretical advantages.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 827 ◽  
Author(s):  
Feilong Liu ◽  
Xianpeng Wang ◽  
Mengxing Huang ◽  
Liangtian Wan ◽  
Huafei Wang ◽  
...  

A novel unitary estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, for the joint direction of arrival (DOA) and range estimation in a monostatic multiple-input multiple-output (MIMO) radar with a frequency diverse array (FDA), is proposed. Firstly, by utilizing the property of Centro-Hermitian of the received data, the extended real-valued data is constructed to improve estimation accuracy and reduce computational complexity via unitary transformation. Then, to avoid the coupling between the angle and range in the transmitting array steering vector, the DOA is estimated by using the rotation invariance of the receiving subarrays. Thereafter, an automatic pairing method is applied to estimate the range of the target. Since phase ambiguity is caused by the phase periodicity of the transmitting array steering vector, a removal method of phase ambiguity is proposed. Finally, the expression of Cramér–Rao Bound (CRB) is derived and the computational complexity of the proposed algorithm is compared with the ESPRIT algorithm. The effectiveness of the proposed algorithm is verified by simulation results.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2453 ◽  
Author(s):  
Guangyong Zheng ◽  
Siqi Na ◽  
Tianyao Huang ◽  
Lulu Wang

Distributed multiple input multiple output (MIMO) radar has attracted much attention for its improved detection and estimation performance as well as enhanced electronic counter-counter measures (ECCM) ability. To protect the target from being detected and tracked by such radar, we consider a barrage jamming strategy towards a distributed MIMO. We first derive the Cramer–Rao bound (CRB) of target parameters estimation using a distributed MIMO under barrage jamming environments. We then set maximizing the CRB as the criterion for jamming resource allocation, aiming at degrading the accuracy of target parameters estimation. Due to the non-convexity of the CRB maximizing problem, particle swarm optimization is used to solve the problem. Simulation results demonstrate the advantages of the proposed strategy over traditional jamming methods.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 99907-99916 ◽  
Author(s):  
Tingting Liu ◽  
Fangqing Wen ◽  
Lei Zhang ◽  
Ke Wang

Sign in / Sign up

Export Citation Format

Share Document